Natural Hazards

, Volume 83, Issue 3, pp 1443–1467 | Cite as

Wave runup estimations on platform-beaches for coastal flood hazard assessment

  • David Didier
  • Pascal Bernatchez
  • Guillaume Marie
  • Geneviève Boucher-Brossard
Original Paper


Wave runup in a shore platform environment has been acquired by in situ measurements at high tide and along field debris following the December 6, 2010, flood near Rimouski (Quebec, Canada), south coast of the St. Lawrence estuary. Using offshore wave data and beach slopes, a linear empirical runup relationship has been adjusted to the study site and showed good predictive results. Two types of beach slopes, the upper foreshore and foreshore slopes, have been assessed in order to calculate the surf similarity parameter. It appears that the foreshore slope, located between the coastline and the end of the foreshore at the seaward edge of the platform, shows best results. This slope was thus used to calculate the wave runup on the shore platform. A static flood map, adding wave runup to observed peak tidal level including the storm surge during the December 6, 2010, flood, has been realized on a LiDAR base layer for a specific site in Sainte-Luce. A second flood map has been applied to validate the approach on an external site in Sainte-Flavie, outside the study area. In both cases, predicted flood extents highly correspond to observed flooded area. High underpredictions occur when using the observed storm tide level only (a 182-year event) without runup, where only 5 and 4 % of the studied area are considered as flooded, respectively. It appears that in a shore platform environment, a wider foreshore reduces wave runup and flood levels.


Coastal flood mapping Shore platform Wave runup Foreshore slope 



We thank the Québec government for funding this project as part of its program for preventing the principal types of natural risks. We also thank the Ministère de la Sécurité publique du Québec for sharing offshore wave data, and the Canadian Hydrographic Service for providing open access tidal database. We thank the Editor and the anonymous reviewers for their pertinent and helpful comments which enhanced the original manuscript. Finally, we thank Robert Barnett for the revised English syntax.


  1. Anfuso G, Gracia F-J (2005) Morphodynamic characteristics and short-term evolution of a coastal sector in SW Spain: implications for coastal erosion management. J Coast Res 216:1139–1153. doi: 10.2112/03-0075.1 CrossRefGoogle Scholar
  2. Aronica G, Bates PD, Horritt MS (2002) Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE. Hydrol Process 16:2001–2016. doi: 10.1002/hyp.398 CrossRefGoogle Scholar
  3. Azzam C, Bouet S, Baillarguet A et al (2014) Guide méthodologique: Plan de prévention des risques. Direction Générale de la Prévention des Risques (DGPR) et Ministère de l’Écologie, du Développement durable, et de l’Energie (MEDDE)Google Scholar
  4. Bates P, De Roo AP (2000) A simple raster-based model for flood inundation simulation. J Hydrol 236:54–77. doi: 10.1016/S0022-1694(00)00278-X CrossRefGoogle Scholar
  5. Battjes JA (1971) Run-up distributions of waves breaking on slopes. J Waterw Harb Coast Eng Div 97:91–114Google Scholar
  6. Battjes JA (1974) Computation of set-up, longshore currents, run-up and overtopping due to wind-generated waves, Report 74-2. Committee on Hydraulics, Department of Civil engineering, Delft University, Delft, Pays-BasGoogle Scholar
  7. Benavente J, Del Río L, Gracia FJ, Martínez-del-Pozo JA (2006) Coastal flooding hazard related to storms and coastal evolution in Valdelagrana spit (Cadiz Bay Natural Park, SW Spain). Cont Shelf Res 26:1061–1076. doi: 10.1016/j.csr.2005.12.015 CrossRefGoogle Scholar
  8. Bernatchez P, Fraser C, Lefaivre D, Dugas S (2011) Integrating anthropogenic factors, geomorphological indicators and local knowledge in the analysis of coastal flooding and erosion hazards. Ocean Coast Manag 54:621–632. doi: 10.1016/j.ocecoaman.2011.06.001 CrossRefGoogle Scholar
  9. Bernatchez P, Brossard G, Sigouin-Cantin M (2012) Contribution des archives à l’étude des événements météorologiques et géomorphologiques causant des dommages aux côtes du Québec maritime et analyse des tendances, des fréquences et des temps de retour des conditions météo-marines extrêmes. RimouskiGoogle Scholar
  10. Breilh JF, Chaumillon E, Bertin X, Gravelle M (2013) Assessment of static flood modeling techniques: application to contrasting marshes flooded during Xynthia (western France). Nat Hazards Earth Syst Sci 13:1595–1612. doi: 10.5194/nhess-13-1595-2013 CrossRefGoogle Scholar
  11. Calvet F, Cabrera MC, Carracedo JC et al (2003) Beachrocks from the island of La Palma (Canary Islands, Spain). Mar Geol 197:75–93. doi: 10.1016/S0025-3227(03)00090-2 CrossRefGoogle Scholar
  12. Cariolet J-M, Suanez S (2013) Runup estimations on a macrotidal sandy beach. Coast Eng 74:11–18. doi: 10.1016/j.coastaleng.2012.11.008 CrossRefGoogle Scholar
  13. Cariolet J-M, Suanez S, Meur-Férec C, Postec A (2012) Cartographie de l’aléa de submersion marine et PPR : éléments de réflexion à partir de l’analyse de la commune de Guissény (Finistère, France). Cybergeo 2012:1–21. doi: 10.4000/cybergeo.25077 Google Scholar
  14. CHS (2014) Predicted water levels, numerical dataset. Fischeries and Oceans Canada. Accessed 27 Dec 2015
  15. CHS (2015) Canadian tides and water levels data archives. Fischeries and Oceans Canada. Accessed 20 Mar 2015
  16. Dean RG, Walton TL (2009) Wave setup. In: Kim YC (ed) Handbook of coastal and ocean engineering. World Scientific Publishing Co, Los AngelesGoogle Scholar
  17. Didier D, Bernatchez P, Boucher-Brossard G et al (2015) Coastal flood assessment based on field debris measurements and wave runup empirical model. J Mar Sci Eng 3:560–590. doi: 10.3390/jmse3030560 CrossRefGoogle Scholar
  18. Dionne J (2002) État des connaissances sur la ligne de rivage Micmac de J.W. Goldthwait (estuaire du Saint-Laurent). Géographie Phys Quat 56:97–121CrossRefGoogle Scholar
  19. Dionne J-C (2009) Aspects géomorphologiques de la batture à blocs entre Sainte-Luce-sur-Mer et Sainte-Flavie, côte sud de l’estuaire maritime du Saint-Laurent. QuébecGoogle Scholar
  20. FEMA (2007) Atlantic Ocean and Gulf of Mexico coastal guidelines update. Final Draft. Federal Emergency Management Agency, Washington, DCGoogle Scholar
  21. FEMA (2014) Region II coastal storm surge study overview. Federal Emergency Management Agency, Washington, DCGoogle Scholar
  22. Forbes DL, Parkes GS, Manson GK, Ketch LA (2004) Storms and shoreline retreat in the southern Gulf of St. Lawrence. Mar Geol 210:169–204CrossRefGoogle Scholar
  23. Gallien TW, Sanders BF, Flick RE (2014) Urban coastal flood prediction: integrating wave overtopping, flood defenses and drainage. Coast Eng 91:18–28. doi: 10.1016/j.coastaleng.2014.04.007 CrossRefGoogle Scholar
  24. Gallop SL, Bosserelle C, Pattiaratchi C, Eliot I (2011) Rock topography causes spatial variation in the wave, current and beach response to sea breeze activity. Mar Geol 290:29–40. doi: 10.1016/j.margeo.2011.10.002 CrossRefGoogle Scholar
  25. Gouvernement du Québec (2016) Protection policy for lakeshores, riverbanks, littoral zones and floodplains.
  26. Guilcher A (1981) Cryoplanation littorale et cordons glaciels de basse mer dans la région de Rimouski, côte sud de l’estuaire du Saint-Laurent, Québec. Géographie Phys Quat 35:155. doi: 10.7202/1000434ar CrossRefGoogle Scholar
  27. Guimarães PV, Farina L Jr, Toldo E et al (2015) Numerical simulation of extreme wave runup during storm events in Tramandaí Beach, Rio Grande do Sul, Brazil. Coast Eng 95:171–180. doi: 10.1016/j.coastaleng.2014.10.008 CrossRefGoogle Scholar
  28. Guza RT, Thornton EB (1982) Swash oscillations on a natural beach. J Geophys Res 87:483–491CrossRefGoogle Scholar
  29. Holman R (1986) Extreme value statistics for wave run-up on a natural beach. Coast Eng 9:527–544. doi: 10.1016/0378-3839(86)90002-5 CrossRefGoogle Scholar
  30. Holman RA, Sallenger AH (1985) Setup and swash on a natural beach. J Geophys Res 90:945. doi: 10.1029/JC090iC01p00945 CrossRefGoogle Scholar
  31. Horritt MS, Bates PD (2001) Predicting floodplain inundation: raster-based modelling versus the finite-element approach. Hydrol Process 15:825–842. doi: 10.1002/hyp.188 CrossRefGoogle Scholar
  32. Hunt I (1959) Design of seawalls and breakwaters. J Waterw Harb Div 85:123–152Google Scholar
  33. Jung Y, Kim D, Kim D et al (2014) Simplified flood inundation mapping based on flood elevation-discharge rating curves using satellite images in gauged watersheds. Water 6:1280–1299. doi: 10.3390/w6051280 CrossRefGoogle Scholar
  34. Kennedy DM, Stephenson WJ, Naylor LA (2014) Chapter 1: introduction to the rock coasts of the world. Geol Soc Lond Mem 40:1–5. doi: 10.1144/M40.1 CrossRefGoogle Scholar
  35. Komar PD (1998) Beach processes and sedimentation. Prentice Hall, Inglewood CliffsGoogle Scholar
  36. Lin N, Emanuel K, Oppenheimer M, Vanmarcke E (2012) Physically based assessment of hurricane surge threat under climate change. Nat Clim Change 2:462–467. doi: 10.1038/nclimate1389 CrossRefGoogle Scholar
  37. Mase H (1989) Random wave runup height on gentle slope. J Waterw Port Coast Ocean Eng 115:649–661. doi: 10.1061/(ASCE)0733-950X(1989)115:5(649) CrossRefGoogle Scholar
  38. Mase H, Tamada T, Yasuda T et al (2013) Wave runup and overtopping at seawalls built on land and in very shallow water. J Waterw Port Coast Ocean Eng 139:346–357. doi: 10.1061/(ASCE)WW.1943-5460.0000199 CrossRefGoogle Scholar
  39. Masson A, Catto N (2013) Extratropical transitions in Atlantic Canada: impacts and adaptive responses. In: Geophysical research abstracts, vol 15. p 3149Google Scholar
  40. Mather A, Stretch D, Garland G (2010) Wave runup on natural beaches. Coast Eng Proc 32:1–6Google Scholar
  41. Mather A, Stretch D, Garland G (2011) Predicting extreme wave run-up on natural beaches for coastal flood planning and management. Coast Eng J 53:87–109. doi: 10.1142/S0578563411002288 CrossRefGoogle Scholar
  42. Matias A, Williams J, Masselink G, Ferreira Ó (2012) Overwash threshold for gravel barriers. Coast Eng 63:48–61. doi: 10.1016/j.coastaleng.2011.12.006 CrossRefGoogle Scholar
  43. Melby JA, Nadal-Caraballo CN, Kobayashi N (2012) Wave runup prediction for flood mapping. Coast Eng Proc 33:1–15CrossRefGoogle Scholar
  44. Moura D, Gabriel S, Jacob J et al (2012) Erosion of rocky shores-protection promoted by sandy beaches and shore platforms. In: 2as Jornadas de Engenharia Hidrográfica, 20–22 June. Lisboa, pp 1–4Google Scholar
  45. Naylor LA, Stephenson WJ, Trenhaile AS (2010) Rock coast geomorphology: recent advances and future research directions. Geomorphology 114:3–11. doi: 10.1016/j.geomorph.2009.02.004 CrossRefGoogle Scholar
  46. Naylor LA, Kennedy DM, Stephenson WJ (2014) Chapter 17: synthesis and conclusion to the rock coast geomorphology of the world. Geol Soc Lond Mem 40:283–286. doi: 10.1144/M40.17 CrossRefGoogle Scholar
  47. Nielsen P, Hanslow DJ (1991) Wave runup distributions on natural beaches. J Coast Res 7:1139–1152Google Scholar
  48. Nott J, Hubbert G (2005) Comparisons between topographically surveyed debris lines and modelled inundation levels from severe tropical cyclones Vance and Chris, and their geomorphic impact on the sand coast. Aust Meteorol Mag 54:187–196Google Scholar
  49. Orton P, Vinogradov S, Georgas N et al (2015) New York City panel on climate change 2015 report chapter 4: dynamic coastal flood modeling. Ann NY Acad Sci 1336:56–66. doi: 10.1111/nyas.12589 CrossRefGoogle Scholar
  50. Patrick L, Solecki W, Jacob KH et al (2015) New York City panel on climate change 2015 report chapter 3: static coastal flood mapping. Ann NY Acad Sci 1336:45–55. doi: 10.1111/nyas.12590 CrossRefGoogle Scholar
  51. Plant NG, Stockdon HF (2015) How well can wave runup be predicted? Comment on Laudier et al. (2011) and Stockdon et al. (2006). Coast Eng 102:44–48. doi: 10.1016/j.coastaleng.2015.05.001 CrossRefGoogle Scholar
  52. Porter NJ, Trenhaile AS, Prestanski KJ, Kanyaya JI (2010) Geomorphology shore platform downwearing in eastern Canada: micro-tidal Gaspé, Québec. Geomorphology 116:77–86. doi: 10.1016/j.geomorph.2009.10.010 CrossRefGoogle Scholar
  53. Powell KA (1990) Predicting short term profile response for shingle beaches,  HR Wallingford Report, SR 219Google Scholar
  54. Pullen T, Allsop NWH, Bruce T et al (2007) Eurotop: wave overtopping of sea defences and related structures: assessment manual.
  55. Quinn G, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  56. Ramana Murthy MV, Reddy NT, Pari Y et al (2012) Mapping of seawater inundation along Nagapattinam based on field observations. Nat Hazards 60:161–179. doi: 10.1007/s11069-011-9950-1 CrossRefGoogle Scholar
  57. Read LK, Vogel RM (2015) Reliability, return periods, and risk under nonstationarity. Water Resour Res. doi: 10.1002/2015WR017089 Google Scholar
  58. Ruessink BG, Kleinhans MG, van den Beukel PGL (1998) Observations of swash under highly dissipative conditions. J Geophys Res 103:3111. doi: 10.1029/97JC02791 CrossRefGoogle Scholar
  59. Ruggiero P, Komar PD, McDougal WG et al (2001) Wave runup, extreme water levels and the erosion of properties backing beaches. J Coast Res 17:407–419Google Scholar
  60. Ruggiero P, Holman RA, Beach RA (2004) Wave run-up on a high-energy dissipative beach. J Geophys Res 109:1–12. doi: 10.1029/2003JC002160 CrossRefGoogle Scholar
  61. Sallenger AH (2000) Storm impact scale for barrier islands. J Coast Res 16:890–895Google Scholar
  62. Saville T (1958) Wave runup on composite slopes. In: Proceedings of 6th international conference on coastal engineering, ASCE. Reston, VA, pp 691–699Google Scholar
  63. Short AD (1999) Handbook of beach and shoreface morphodynamics. Wiley, ChichesterGoogle Scholar
  64. Soldini L, Antuono M, Brocchini M (2013) Numerical modeling of the influence of the beach profile on wave run-up. J Waterw Port Coast Ocean Eng 139:115CrossRefGoogle Scholar
  65. Stephenson WJ, Kirk RM (2000) Development of shore platforms on Kaikoura Peninsula, South Island, New Zealand Part one: the role of waves. Geomorphology 32:21–41. doi: 10.1016/S0169-555X(99)00061-6 CrossRefGoogle Scholar
  66. Stockdon HF, Holman RA, Howd PA, Sallenger AH (2006) Empirical parameterization of setup, swash, and runup. Coast Eng 53:573–588. doi: 10.1016/j.coastaleng.2005.12.005 CrossRefGoogle Scholar
  67. Stockdon HF, Sallenger AH, Holman RA, Howd PA (2007) A simple model for the spatially-variable coastal response to hurricanes. Mar Geol 238:1–20. doi: 10.1016/j.margeo.2006.11.004 CrossRefGoogle Scholar
  68. Stockdon HF, Doran KS, Sallenger AH (2009) Extraction of lidar-based dune-crest elevations for use in examining the vulnerability of beaches to inundation during hurricanes. J Coast Res 10053:59–65. doi: 10.2112/SI53-007.1 CrossRefGoogle Scholar
  69. Stockdon HF, Thompson DM, Plant NG, Long JW (2014) Evaluation of wave runup predictions from numerical and parametric models. Coast Eng 92:1–11. doi: 10.1016/j.coastaleng.2014.06.004 CrossRefGoogle Scholar
  70. Suanez S, Cancouët R, Floc’h F et al (2015) Observations and predictions of wave runup, extreme water levels, and medium-term dune erosion during storm conditions. J Mar Sci Eng 3:674–698. doi: 10.3390/jmse3030674 CrossRefGoogle Scholar
  71. Taborda R, Ribeiro MA (2015) A simple model to estimate the impact of sea-level rise on platform beaches. Geomorphology 234:204–210. doi: 10.1016/j.geomorph.2015.01.015 CrossRefGoogle Scholar
  72. Taylor PJ (1977) Quantitative methods in geography: an introduction to spatial analysis. Houghton Mifflin Harcourt, BostonGoogle Scholar
  73. Tomás A, Méndez FJ, Medina R et al (2015) A methodology to estimate wave-induced coastal flooding hazard maps in Spain. J Flood Risk Manag. doi: 10.1111/jfr3.12198 Google Scholar
  74. Trenhaile AS (2004) Modeling the accumulation and dynamics of beaches on shore platforms. Mar Geol 206:55–72. doi: 10.1016/j.margeo.2004.03.013 CrossRefGoogle Scholar
  75. Trenhaile AS, Kanyaya JI (2007) The role of wave erosion on sloping and horizontal shore platforms in macro-and mesotidal environments. J Coast Res 23:298–309. doi: 10.2112/04-0282.1 CrossRefGoogle Scholar
  76. US Army Corps of Engineers (2008) Water wave mechanics. In: Coastal Engineering Manual. Engineering Manual 1110-2-1100, U.S. Army Corps of EngineersGoogle Scholar
  77. Vitousek S, Barbee MM, Fletcher CH et al (2009) Pu‘ukoholā Heiau National Historic Site and Kaloko-Honokōhau Historical Park, Big Island of Hawai‘i. Coastal Hazard Analysis ReportGoogle Scholar
  78. Vousdoukas MI, Velegrakis AF, Plomaritis TA (2007) Beachrock occurrence, characteristics, formation mechanisms and impacts. Earth Sci Rev 85:23–46. doi: 10.1016/j.earscirev.2007.07.002 CrossRefGoogle Scholar
  79. Webster T, McGuigan K, Collins K, MacDonald C (2014) Integrated river and coastal hydrodynamic flood risk mapping of the lahave river estuary and town of Bridgewater, Nova Scotia, Canada. Water 6:517–546. doi: 10.3390/w6030517 CrossRefGoogle Scholar
  80. Zhang K, Li Y, Liu H et al (2013) Comparison of three methods for estimating the sea level rise effect on storm surge flooding. Clim Change 118:487–500. doi: 10.1007/s10584-012-0645-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • David Didier
    • 1
  • Pascal Bernatchez
    • 1
  • Guillaume Marie
    • 1
  • Geneviève Boucher-Brossard
    • 1
  1. 1.Laboratoire de dynamique et de gestion intégrée des zones côtières (LDGIZC), Centre d’études nordiques, Québec-OcéanUniversité du Québec à RimouskiRimouskiCanada

Personalised recommendations