Natural Hazards

, Volume 83, Issue 3, pp 1821–1842 | Cite as

Tornado hazard for structural engineering

  • Zhenhua Huang
  • Xingang FanEmail author
  • Liping Cai
  • Sheldon Q. Shi
Review Article


Tornado hazards have caused frequent and severe damages to built environment and lives. The severity of the hazards directly relates to the strength of the tornadic events in terms of meteorological parameters, as well as the resistance of buildings to the strong tornadic impacts. The tornado hazards are reviewed from both meteorological and engineering perspectives in this study. For each of the perspectives, current status of tornado hazard studies including the observation, monitoring, analysis, numerical and laboratory simulations, and limitations and future demands of development are discussed. While the two disciplines are fast advancing individually, their interaction and interdependence are deemed prominent and imperative in the future interdisciplinary studies.


Tornado Atmospheric hazard Structural engineering Structural analysis 


  1. Abbey R, Fujita T (1975) Use of tornado path lengths and gradations of damage to assess tornado intensity probabilities. Bull Am Meteorol Soc Am Meteorological Soc 45 Beacon St, Boston, MA 02108–3693:753Google Scholar
  2. Akiya Y, Saito A, Sakanoi T, Hozumi Y, Yamazaki A, Otsuka Y, Nishioka M, Tsugawa T (2014) First spaceborne observation of the entire concentric airglow structure caused by tropospheric disturbance. Geophys Res Lett 41(19):6943–6948CrossRefGoogle Scholar
  3. Amini MO, van de Lindt JW (2014) Quantitative insight into rational tornado design wind speeds for residential wood-frame structures using fragility approach. J Struct Eng 140(7):04014033CrossRefGoogle Scholar
  4. Ashley WS (2007) Spatial and temporal analysis of tornado fatalities in the United States: 1880–2005. Weather Forecast 22(6):1214–1228CrossRefGoogle Scholar
  5. Ashley WS, Strader S, Rosencrants T, Krmenec AJ (2014) Spatiotemporal changes in tornado hazard exposure: the case of the expanding bull’s-eye effect in Chicago, Illinois. Weather Clim Soc 6(2):175–193CrossRefGoogle Scholar
  6. Atkins NT, Butler KM, Flynn KR, Wakimoto RM (2014) An integrated damage, visual, and radar analysis of the 2013 Moore, Oklahoma, Ef5 Tornado. Bull Am Meteorol Soc 95(10):1549–1561CrossRefGoogle Scholar
  7. Baker GL (1981) Boundary layers in laminar vortex flows. Ph.D Thesis, Purdue UniversityGoogle Scholar
  8. Bienkiewicz B (2008) Lessons learned from structural damage investigations—a case study of 2003 Missouri-Kansas tornadoes. In: Structures congress-structures congress, pp 24–26Google Scholar
  9. Bienkiewicz B, and Dudhia P (1993) Physical modeling of tornado-like flow and tornado effects on building loading. In: Proceedings 7th US national conference on wind engineering, pp 95–106Google Scholar
  10. Bluestein HB, Houser JB, French MM, Snyder JC, Emmitt GD, PopStefanija I, Baldi C, Bluth RT (2014) Observations of the boundary layer near tornadoes and in supercells using a mobile, collocated, pulsed doppler lidar and radar. J Atmos Ocean Technol 31(2):302–325CrossRefGoogle Scholar
  11. Bracken WC, and Roda TA (2007). Establishing protocols for catastrophe damage assessments of multiple buildings. Forensic Engineering (2007) ASCE pp 1–10Google Scholar
  12. Brooks HE (2004) On the relationship of tornado path length and width to intensity. Weather Forecast 19(2):310–319CrossRefGoogle Scholar
  13. Brooks HE, Doswell CA, Kay MP (2003) Climatological estimates of local daily tornado probability for the United States. Weather Forecast 18(4):626–640CrossRefGoogle Scholar
  14. Bryan GH, Fritsch JM (2002) A benchmark simulation for moist nonhydrostatic numerical models. Mon Weather Rev 130(12):2917–2928CrossRefGoogle Scholar
  15. Bryan GH, Morrison H (2012) Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon Weather Rev 140(1):202–225CrossRefGoogle Scholar
  16. Budek A, Zain M, Qiao L, Phelan RS (2006) Validation of finite-element analyses for storm shelters. J Archit Eng 12(2):64–71CrossRefGoogle Scholar
  17. Burgess D, Ortega K, Stumpf G, Garfield G, Karstens C, Meyer T, Smith B, Speheger D, Ladue J, Smith R, Marshall T (2014) 20 May 2013 Moore, Oklahoma, Tornado: damage survey and analysis. Weather Forecast 29(5):1229–1237CrossRefGoogle Scholar
  18. Camp J, Rothfusz L, Anderson A, Speheger D, Ortega K, Smith B (2014) Assessing the Moore, Oklahoma (2013) tornado using the National Weather Service Damage Assessment Toolkit. In: Proceedings of the 94th American Meteorological Society Annual Meeting. Special symposium on severe local storms: the current state of the science and understanding impactsGoogle Scholar
  19. Changnon SA (2009) Tornado losses in the United States. Nat Hazards Rev 10(4):145–150CrossRefGoogle Scholar
  20. Church C, Snow J, Agee E (1977) Tornado vortex simulation at Purdue University. Bull Am Meteorol Soc 58(9):900–908CrossRefGoogle Scholar
  21. Clem CL, and Hall B (2012) Systematic plan for re-constructing the TVA transmission system, April 27, 2011. In: Electrical transmission and substation structures 2012@ solutions to building the grid of tomorrow. ASCE, pp 1–13Google Scholar
  22. Coulbourne WL (2008) Wind speed analysis of Greensburg, KS tornado. In: Structures congress-structures congress, pp 24–26Google Scholar
  23. Coulbourne WL, and Miller J (2012) Performance of school buildings in the Joplin, MO, Tornado. In: Structures congress 2012, ASCE, pp 989–998Google Scholar
  24. Crandell JH, and Kochkin V (2005). Scientific damage assessment methodology and practical applications. In: ASCE/SEI structures congress, forensics symposium, New YorkGoogle Scholar
  25. Dao TN, Graettinger AJ, Alfano C, Gupta R, Haan FL, Prevatt D, Richardson J, Kashani AG (2014) Failure progression analysis of observed residential structural damage within a Tornado Wind Field. Proc Struct Congress 2014:1448–1459Google Scholar
  26. De Silva DG, Kruse JB, Wang Y (2006) Catastrophe-induced destruction and reconstruction 1. Nat Hazards Rev 7(1):19–25CrossRefGoogle Scholar
  27. Doswell CA III, Brooks HE, Dotzek N (2009) On the implementation of the enhanced fujita scale in the USA. Atmos Res 93(1–3):554–563CrossRefGoogle Scholar
  28. Dotzek N, Kurgansky MV, Grieser J, Feuerstein B, Nevir P (2005) Observational evidence for exponential tornado intensity distributions over specific kinetic energy. Geophys Res Lett 32(24):L24813CrossRefGoogle Scholar
  29. Edward Back W, Fridley K, Morgan R (2012) Incorporation of recovery planning into a student design course following a Tornado. Leadersh Manag Eng 12(3):169–178CrossRefGoogle Scholar
  30. Edwards JL (2013) Post-disaster climatology for hurricanes and tornadoes in the United States: 2000–2009. Kent State University, KentGoogle Scholar
  31. Edwards R, LaDue JG, Ferree JT, Scharfenberg K, Maier C, Coulbourne WL (2013) Tornado intensity estimation: past, present, and future. Bull Am Meteorol Soc 94(5):641–653CrossRefGoogle Scholar
  32. Elsner JB, Widen HM (2014) Predicting Spring Tornado Activity in the Central Great Plains by 1 March. Mon Weather Rev 142(1):259–267CrossRefGoogle Scholar
  33. Elsner J, Jagger T, Widen H, Chavas D (2014) Daily Tornado frequency distributions in the United States. Environ Res Lett 9(2):024018CrossRefGoogle Scholar
  34. Feuerstein B, Dotzek N, Grieser J (2005) Assessing a Tornado climatology from global tornado intensity distributions. J Clim 18(4):585–596CrossRefGoogle Scholar
  35. Fratinardo VF, Schroeder SA (2013) Accuracy of EF ratings following a tornado event: an engineer’s perspective. In: Structures congress. American Society of Civil Engineers (ASCE), Pittsburgh, PAGoogle Scholar
  36. Fratinardo VF, Schroeder SA (2014) Lessons learned: how changes in code, construction and preparedness affected Tornado damage in Moore, Oklahoma, 1999 to 2013. In: Structures congress, pp 1383–1391 (ASCE)Google Scholar
  37. Graettinger AJ, Grau D, Van De Lindt J, and Prevatt DO (2012) GIS for the geo-referenced analysis and rapid dissemination of forensic evidence collected in the aftermath of the Tuscaloosa tornado. In: Construction research congress, pp 2170–2179Google Scholar
  38. Gravelle CM, Mecikalski JR, Line WE, Bedka KM, Petersen RA, Sieglaff JM, Stano GT, Goodman SJ (2016) Demonstration of a GOES-R Satellite Convective toolkit to “Bridge the Gap” between severe weather watches and warnings: an example from the 20 may 2013 Moore, OK Tornado Outbreak. Bull Am Meteorol Soc 97:69–84. doi: 10.1175/BAMS-D-14-00054.1 CrossRefGoogle Scholar
  39. Grazulis TP (1993). A 110-year perspective of significant tornadoes. In: The tornado: its structure, dynamics, prediction, and hazards, pp 467–474Google Scholar
  40. Grazulis TP, Schaefer JT, Abbey RF (1993) Advances in tornado climatology, hazards, and risk assessment since tornado symposium II. The tornado: its structure, dynamics, prediction, and hazards, pp 409–426Google Scholar
  41. Gu M, Huang P, Tao L, Zhou X, Fan Z (2010) Experimental study on wind loading on a complicated group-tower. J Fluids Struct 26(7–8):1142–1154Google Scholar
  42. Haan FL Jr, Sarkar PP, Gallus WA (2008) Design, construction and performance of a large tornado simulator for wind engineering applications. Eng Struct 30(4):1146–1159CrossRefGoogle Scholar
  43. Haan FL Jr, Balaramudu VK, Sarkar PP (2010) Tornado-induced wind loads on a low-rise building. J Struct Eng ASCE 136(1):106–116CrossRefGoogle Scholar
  44. Haan FL, Sarkar PP, Prevatt D, Roueche D, Graettinger A, Dao TN, and Crawford PS (2014) Using tornado damage surveys to improve laboratory tornado simulations. In: Structures congress 2014, ASCE, pp 1472–1483Google Scholar
  45. Hamada A, El Damatty AA, Hangan H, Shehata AY (2010) Finite element modelling of transmission line structures under tornado wind loading. Wind Struct 13(5):451–469CrossRefGoogle Scholar
  46. Hangan H, Kim J (2008) Swirl ratio effects on tornado vortices in relation to the fujita scale. Wind Struct 11(4):291–302CrossRefGoogle Scholar
  47. Hunt J, Abell C, Peterka J, Woo H (1978) Kinematical studies of the flows around free or surface-mounted obstacles; applying topology to flow visualization. J Fluid Mech 86(01):179–200CrossRefGoogle Scholar
  48. Jordan JW (2007). Tornado damage assessment for structural engineers. Forensic Engineering, ASCE, pp 1–17Google Scholar
  49. Karstens CD, Samaras TM, Lee BD, Gallus WA Jr, Finley CA (2010) Near-ground pressure and wind measurements in tornadoes*. Mon Weather Rev 138(7):2570–2588CrossRefGoogle Scholar
  50. Kelly D, Schaefer J, McNulty R, Doswell C III, Abbey R Jr (1978) An augmented tornado climatology. Mon Weather Rev 106(8):1172–1183CrossRefGoogle Scholar
  51. Kilroy G, Smith RK (2015) Tropical cyclone convection: the effects of a vortex boundary-layer wind profile on deep convection. Q J R Meteorol Soc 141(688):714–726CrossRefGoogle Scholar
  52. Krehbiel PR, Thomas RJ, Rison W, Hamlin T, Harlin J, Davis M (2000) GPS-based mapping system reveals lightning inside storms. EOS Trans Am Geophys Union 81(3):21–25CrossRefGoogle Scholar
  53. Lee KS, Caffey JM, and Killian DM (2010) Structural evaluation procedures and case studies of damage related to wind storms, tornadoes, and hurricanes. In: Forensic Engineering 2009@ sPathology of the Built Environment, ASCE, pp 749–758Google Scholar
  54. Malamud BD, Turcotte DL (2012) Statistics of severe tornadoes and severe tornado outbreaks. Atmos Chem Phys 12(18):8459–8473CrossRefGoogle Scholar
  55. Markowski PM, Richardson YP (2014) The influence of environmental low-level shear and cold pools on tornadogenesis: insights from idealized simulations. J Atmos Sci 71(1):243–275CrossRefGoogle Scholar
  56. Markowski PM, Straka JM, Rasmussen EN (2002) Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon Weather Rev 130(7):1692–1721CrossRefGoogle Scholar
  57. Markowski P, Richardson Y, Bryan G (2014) The origins of vortex sheets in a simulated supercell thunderstorm. Mon Weather Rev 142(11):3944–3954CrossRefGoogle Scholar
  58. Martinuzzi R, Tropea C (1993) The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow (data bank contribution). J Fluids Eng 115(1):85–92CrossRefGoogle Scholar
  59. McDonald JR (2001) T. Theodore Fujita: his contribution to tornado knowledge through damage documentation and the Fujita scale. Bull Am Meteorol Soc 82(1):63–72CrossRefGoogle Scholar
  60. McDonald JR, Mehta KC, Smith DA, and Womble JA (2009) The enhanced fujita scale: development and implementation. In: ASCE 5th congress on forensic engineering, Washington, DC, Nov 10–15 (submitted)Google Scholar
  61. Mishra A, James D, Letchford C (2008a) Physical simulation of a single-celled tornado-like vortex, part B: wind loading on a cubical model. J Wind Eng Ind Aerodyn 96(8):1258–1273CrossRefGoogle Scholar
  62. Mishra AR, James DL, Letchford CW (2008b) Physical simulation of a single-celled tornado-like vortex, part A: flow field characterization. J Wind Eng Ind Aerodyn 96(8–9):1243–1257CrossRefGoogle Scholar
  63. Natarajan D (2011) Numerical simulation of tornado-like vortices. PhD Thesis, the University of Western OntarioGoogle Scholar
  64. Natarajan V, Chyu M (1994) Effect of flow angle-of-attack on the local heat/mass transfer from a wall-mounted cube. J Heat Transfer 116(3):552–560CrossRefGoogle Scholar
  65. Naylor J, Gilmore MS (2012a) Convective initiation in an idealized cloud model using an updraft nudging technique. Mon Weather Rev 140(11):3699–3705CrossRefGoogle Scholar
  66. Naylor J, Gilmore MS (2012b) Environmental Factors Influential to the Duration and Intensity of Tornadoes in Simulated Supercells. Geophys Res Lett 39:L17802CrossRefGoogle Scholar
  67. Naylor J, Gilmore MS (2014) Vorticity evolution leading to tornadogenesis and tornadogenesis failure in simulated supercells. J Atmos Sci 71(3):1201–1217CrossRefGoogle Scholar
  68. Naylor J, Gilmore MS, Thompson RL, Edwards R, Wilhelmson RB (2012) Comparison of objective supercell identification techniques using an idealized cloud model. Mon Weather Rev 140(7):2090–2102CrossRefGoogle Scholar
  69. Nowotarski CJ, Markowski PM, Richardson YP, Bryan GH (2015) Supercell low-level mesocyclones in simulations with a sheared convective boundary layer. Mon Weather Rev 143(1):272–297CrossRefGoogle Scholar
  70. Orf L, Kantor E, Savory E (2012) Simulation of a downburst-producing thunderstorm using a very high-resolution three-dimensional cloud model. J Wind Eng Ind Aerodyn 104:547–557CrossRefGoogle Scholar
  71. Orf L, Wilhelmson RB, Wicker LJ, Lee BD and Finley CA (2014) Genesis and maintenance of a long-track EF5 tornado embedded within a simulated supercell. In: 27th Conference on severe local storms. American Meteorological Society, Nov 2–7, 2014, Madison, WI, presentation 3B.3:
  72. Otsuka T, Torii Y, and Ito T (2014) Anomaly detection algorithm for localized abnormal weather using low-cost wireless sensor nodes. In: 2014 IEEE 7th international conference on service-oriented computing and applications (SOCA). IEEE, pp 304–308Google Scholar
  73. Paul BK, Stimers M (2014) Spatial analyses of the 2011 Joplin tornado mortality: deaths by interpolated damage zones and location of victims. Weather Clim Soc 6(2):161–174CrossRefGoogle Scholar
  74. Phillips WD, and Sankar R (2013) Improved transient weather reporting using people centric sensing. In: 2013 IEEE consumer communications and networking conference (CCNC). IEEE, pp 920–925Google Scholar
  75. Prevatt DO, Roueche DB, van de Lindt, JW, Pei S, Dao T, Coulbourne W, Graettinger AJ, Gupta R, and Grau D (2012a) Building damage observations and EF classifications from the Tuscaloosa, AL and Joplin, MO tornadoes. In: Structures congress 2012, ASCE Reston, VA, pp 999–1010Google Scholar
  76. Prevatt DO, van de Lindt, JW, Back EW, Graettinger AJ, Pei S, Coulbourne W, Gupta R, James D, Agdas D (2012b) Making the case for improved structural design: tornado outbreaks of 2011. Leadersh Manag Eng 192:254–270Google Scholar
  77. Potter S (2007) Fine-tuning Fujita: after 35 years, a new scale for rating tornadoes takes effect. Weatherwise 60(2):64–71CrossRefGoogle Scholar
  78. Ramsdell JV, Andrews G (1986) Tornado Climatology of the Contiguous United States (No. NUREG/CR-4461; PNL-5697). Pacific Northwest Lab., Richland, WA (USA)Google Scholar
  79. Ramsdell JV, Rishel JP, Buslik AJ (2007) Tornado climatology of the contiguous United States. Nuclear Regulatory Commission Rep. NUREG/CR-4461, Rev. 2, p 246. Accessed 25 May 2016
  80. Ramseyer C, Floyd R, Holliday L, Roswurm S (2014) Influence of lateral load bracing systems on damage and survivability of residential structures impacted by the Moore, Oklahoma, tornado of May 20, 2013. Proc Struct Congress 2014:1484–1507Google Scholar
  81. Refan M (2014) Physical simulation of tornado-like vortices. Ph.D Dissertation, The University of Western Ontario. Electronic Thesis and Dissertation Repository. Paper 1923Google Scholar
  82. Refan M, Hangan H, Wurman J (2014) Reproducing tornadoes in laboratory using proper scaling. J Wind Eng Ind Aerodyn 135:136–148CrossRefGoogle Scholar
  83. Reinhold TA, Ellingwood B (1982) Tornado damage risk assessment (No. NUREG/CR-2944; BNL-NUREG-51586). National Bureau of Standards, Washington, DC (USA). Center for Building TechnologyGoogle Scholar
  84. Senguipta A, Haan FL, Sarkar PP, Balaramudu V (2008) Transient loads on buildings in microburst and tornado winds. J Wind Eng Ind Aerodyn 96(10–11):2173–2187CrossRefGoogle Scholar
  85. Simmons KM, Sutter D, Pielke R (2013) Normalized tornado damage in the United States: 1950-2011. Environ Hazards Hum Policy Dimens 12(2):132–147Google Scholar
  86. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2005) A description of the advanced research WRF version 2. NCAR/TN–468+STR, NCAR TECHNICAL NOTEGoogle Scholar
  87. Smith TL, Perotin M, and Walsh E (2012) Enhancing tornado performance of critical facilities: findings and recommendations of FEMA’s mitigation assessment team. In: Structures congress 2012, ASCE, pp 977–988Google Scholar
  88. Snyder JC, Bluestein HB (2014) Some considerations for the use of high-resolution mobile radar data in tornado intensity determination. Weather Forecast 29(4):799–827CrossRefGoogle Scholar
  89. Standohar-Alfano CD, van de Lindt John W (2014) Empirically based probabilistic tornado hazard analysis of the United States using 1973–2011 data. Nat Hazards Rev 16(1):04014013CrossRefGoogle Scholar
  90. Standohar-Alfano CD, Freyne S, Graettinger AJ, Floyd RW, Dao TN (2014) Performance of residential shelters during the May 20, 2013, Tornado in Moore, Oklahoma. J Perform Constr Facil. doi: 10.1061/(ASCE)CF.1943-5509.0000636
  91. Strader SM, Ashley W, Irizarry A, Hall S (2015) A climatology of tornado intensity assessments. Meteorol Appl 22(3):513–524CrossRefGoogle Scholar
  92. Tippett MK, Sobel AH, Camargo SJ (2012) Association of US tornado occurrence with monthly environmental parameters. Geophys Res Lett 39:L02801CrossRefGoogle Scholar
  93. van de Lindt J, Amini MO, Standohar-Alfano C, Dao T (2012) Systematic study of the failure of a light-frame wood roof in a tornado. Buildings 2(4):519–533CrossRefGoogle Scholar
  94. van de Lindt JW, Pei S, Dao T, Graettinger A, Prevatt DO, Gupta R, Coulbourne W (2013) Dual-objective-based tornado design philosophy. J Struct Eng ASCE 139(2):251–263CrossRefGoogle Scholar
  95. VanDerostyne DA, Hallet SK, and Nichols JA (2013) Post-event forensic investigation of damaged structures from strong wind events. In: Forensic Engineering 2012@ sGateway to a Safer Tomorrow, ASCE, pp 841–850Google Scholar
  96. Verbout SM, Brooks HE, Leslie LM, Schultz DM (2006) Evolution of the US tornado database: 1954–2003. Weather Forecast 21(1):86–93CrossRefGoogle Scholar
  97. Walsh E, Tezak S (2012) Findings and Recommendations of FEMA’s Mitigation Assessment Team Investigations of the Spring 2011 Tornado Outbreaks. Forensic Eng 2012:821–830CrossRefGoogle Scholar
  98. Whalen TM, Gopal S, Abraham DM (2004) Cost-benefit model for the construction of tornado shelters. J Constr Eng Manag 130(6):772–779CrossRefGoogle Scholar
  99. Womble JA, Smith DA, Mehta KC, McDonald JR (2009) The enhanced Fujita Scale: for use beyond tornadoes. Forensic Eng 2009:699–708. doi: 10.1061/41082(362)71
  100. Wood VT, Brown RA (2011) Simulated tornadic vortex signatures of tornado-like vortices having one- and two-celled structures. J Appl Meteorol Climatol 50(11):2338–2342CrossRefGoogle Scholar
  101. Wurman J, Kosiba K (2013) Finescale radar observations of tornado and mesocyclone structures. Weather Forecast 28(5):1157–1174CrossRefGoogle Scholar
  102. Wurman J, Robinson P, Alexander C, Richardson Y (2007) Low-level winds in tornadoes and potential catastrophic tornado impacts in urban areas. Bull Am Meteorol Soc 88(1):31–46CrossRefGoogle Scholar
  103. Wurman J, Alexander C, Robinson P, Richardson Y (2008) Low-level winds in tornadoes and potential catastrophic tornado impacts in urban areas reply. Bull Am Meteorol Soc 89(10):1580–1581CrossRefGoogle Scholar
  104. Wurman J, Dowell D, Richardson Y, Markowski P, Rasmussen E, Burgess D, Wicker L, Bluestein HB (2012a) The second verification of the origins of rotation in tornadoes experiment: VORTEX2. Bull Am Meteorol Soc 93(8):1147–1170CrossRefGoogle Scholar
  105. Wurman J, Dowell D, Richardson Y, Markowski P, Rasmussen E, Burgess D, Wicker L, Bluestein HB (2012b) The second verification of the origins of rotation in tornadoes experiment: VORTEX2. Bull Am Meteorol Soc 93(8):1147–1170CrossRefGoogle Scholar
  106. Wurman J, Kosiba K, Robinson P, Marshall T (2014) The role of multiple-vortex tornado structure in causing storm researcher fatalities. Bull Am Meteorol Soc 95(1):31–45CrossRefGoogle Scholar
  107. Yakhot A, Anor T, Liu H, Nikitin N (2006) Direct numerical simulation of turbulent flow around a wall-mounted cube: spatio-temporal evolution of large-scale vortices. J Fluid Mech 566:1–9CrossRefGoogle Scholar
  108. Yang Z, Sarkar P, Hu H (2011) An experimental study of a high-rise building model in tornado-like winds. J Fluids Struct 27(4):471–486CrossRefGoogle Scholar
  109. Zhou H, Dhiradhamvit K, Attard TL (2014) Tornado-borne debris impact performance of an innovative storm safe room system protected by a carbon fiber reinforced hybrid polymeric-matrix composite. Eng Struct 59:308–319CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Zhenhua Huang
    • 1
  • Xingang Fan
    • 2
    Email author
  • Liping Cai
    • 1
  • Sheldon Q. Shi
    • 1
  1. 1.University of North TexasDentonUSA
  2. 2.Meteorology Program, Department of Geography and GeologyWestern Kentucky UniversityBowling GreenUSA

Personalised recommendations