Skip to main content

GPS geodetic infrastructure for natural hazards study in the Puerto Rico and Virgin Islands region

Abstract

The Puerto Rico and Virgin Islands (PRVI) are located within the complex plate boundary zone between the North American and Caribbean plates. This region faces multiple natural hazards, such as earthquakes, tsunamis, landslides, hurricanes, and flooding. The islands are part of the Greater Antilles island chain, which is one of the earliest places that employed Global Positioning System (GPS) technology in plate tectonics and natural hazards studies. A dense Continuously Operating Reference Stations (CORS) network with 24 permanent GPS stations is currently operated by a joint effort of academic, government, and local land surveying communities. This region has been regarded as one of the densest CORS coverage regions worldwide. This article summarized the current GPS geodetic infrastructure in the PRVI region, which includes three components: a dense CORS network that is open to the public, a stable local reference frame that is updated in time, and sophisticated software packages for GPS data processing that are freely available to the academic and research community. This article focused on establishing a local reference frame, the stable Puerto Rico and Virgin Islands reference frame of 2014 (PRVI14), which is essential for precisely delineating local ground deformation over space and time. Applications of the geodetic infrastructure for precise faulting, landslide, and sea-level monitoring were illustrated in this study. According to this study, the St. Croix Island is moving away from the Puerto Rico and Northern Virgin Islands toward southeast with a steady velocity of 1.7 mm/year; the Lajas Valley in southwestern of Puerto Rico may be experiencing a north–south direction extension (1.5 mm/year) and a minor right-lateral strike slip (0.4 mm/year) with respect to the PRVI14 reference frame; the current absolute sea-level rise rate in the PRVI coastal region is about 1.6–2.0 mm/year.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Almy C, Meltzer A, Dietrich C (2000) Faulting in the Lajas Valley and on the adjacent shelf. southern Puerto Rico: EOS (Transactions, American Geophysical Union), F1181

  2. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geodesy 85:457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  3. Aponte J, Meng X, Hill C, Moore T, Burbidge M, Dodson A (2009) Quality assessment of a network-based RTK GPS service in the UK. J Appl Geodesy 3:25–34

    Article  Google Scholar 

  4. Asencio E (1980) Western Puerto Rico Seismicity. USGS Open File Report: 80–192

  5. Barkan R, ten Brink US (2010) Tsunami simulations of the 1867 Virgin Island earthquake: constraints on epicenter location and fault parameters. Bull Seismol Soc Am 100:995–1009. doi:10.1785/0120090211

    Article  Google Scholar 

  6. Bar-Sever YE, Kroger PM, Borjesson JA (1998) Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. J Geophys Res Solid Earth 103:5019–5035. doi:10.1029/97JB03534

    Article  Google Scholar 

  7. Benford B, DeMets C, Calais E (2012) GPS estimates of microplate motions, northern Caribbean: evidence for a Hispaniola microplate and implications for earthquake hazard. Geophys J Int 191(2):481–490. doi:10.1111/j.1365-246X.2012.05662.x

    Article  Google Scholar 

  8. Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss JP (2010) Single receiver phase ambiguity resolution with GPS data. J Geodesy 84:327–337. doi:10.1007/s00190-010-0371-9

    Article  Google Scholar 

  9. Blewitt G (1989) Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km. J Geophys Res 94(B8):10187–10203

    Article  Google Scholar 

  10. Blewitt G, Kreemer C, Hammond WC, Goldfarb JM (2013) Terrestrial reference frame NA12 for crustal deformation studies in North America. J Geodyn 72:11–24

    Article  Google Scholar 

  11. Boehm J, Niell A, Tregoning P, Schuh H (2006) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett. doi:10.1029/2005GL025546

    Google Scholar 

  12. Braun JJ, Calais E, Dausz K, Feaux K, Friesen B, Mattioli G, Miller MM, Normandeau J, Seider E, Wang G (2012) COCOnet (Continuously Operating Caribbean GPS Observational Network): infrastructure enhancements to improve sea level monitoring. Geol Soc Am 44(7):229

    Google Scholar 

  13. Calais E, Mazabraud Y, Mercier de Lepinay B, Mann P, Mattioli G, Jansma P (2002) Strain partitioning and fault slip rates in the northeastern Caribbean from GPS measurements. Geophys Res Lett 29:1856. doi:10.1029/2002GL015397

    Article  Google Scholar 

  14. Cleveland WS, Devlin SJ (1988) Locally-weighted regression: an approach to regression analysis by local fitting. J Amer Statist As 83:596–610

    Article  Google Scholar 

  15. Cleveland WS, Grosse E (1990) Fitting curves and surfaces to data. Wadsworth Advanced Books and Software, Monterey

    Google Scholar 

  16. Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition procedure based on loess. J Off Stat 6:3–73

    Google Scholar 

  17. Clinton JF, Cua G, Huérfano CV, von Hillerbrandt-Andrade CG, Martínez-Cruzado J (2006) The current state of seismic monitoring in Puerto Rico. Seismo Res Lett 77(5):5–12

    Article  Google Scholar 

  18. DeMets C, Jansma PE, Mattioli GS, Dixon TH, Farina F, Bilham R, Calais E, Mann P (2000) GPS geodetic constraints on Caribbean-North America plate motion. Geophys Res Lett. doi:10.1029/1999GL005436

    Google Scholar 

  19. DeMets C, Mattioli GS, Jansma P, Rogers R, Tenorios C, Turner HL (2007) Present motion and deformation of the Caribbean plate: constraints from new GPS geodetic measurements from Honduras and Nicaragua. In: Mann P (ed) Geologic and tectonic development of the Caribbean Plate in Northern Central America. Geol Soc Am Spec Pap 428:21–36. doi:10.1130/2007.2428(02)

  20. Dixon TH, Gonzalez G, Lichten SM, Katsigris E (1991) First epoch geodetic measurements with the Global Positioning System across the northern Caribbean plate boundary zone. J Geophys Res 96:2397. doi:10.1029/90JB02003

    Article  Google Scholar 

  21. Dixon TH, Farina F, DeMets C, Jansma P, Mann P, Calais E (1998) Relative motion between the Caribbean and North American plates and related boundary zone deformation from a decade of GPS observations. J Geophys Res 103:15157. doi:10.1029/97JB03575

    Article  Google Scholar 

  22. Dong D, Bock Y (1989) Global Positioning System network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res 94(B4):3949–3966. doi:10.1029/JB094iB04p03949

    Article  Google Scholar 

  23. Donnelly TW (1964) Evolution of eastern Greater Antillean island arc. Am As Pet Geol Bull 48:680–696. doi:10.1306/BC743D23-16BE-11D7-8645000102C1865D

    Google Scholar 

  24. Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of Global Navigation Satellite Systems. J Geodesy 83:191–198

    Article  Google Scholar 

  25. Eckl MC, Snay RA, Soler T, Cline MW, Mader GL (2001) Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration. J Geodesy 75(12):633–640

    Article  Google Scholar 

  26. Feaux K, Braun JJ, Calais E, Dausz K, Friesen BT, Mattioli GS, Miller MM, Normandeau J, Seider E, Wang G (2012) COCONet (Continuously Operating Caribbean GPS Observational Network): network status and project highlights. AGU Fall meeting Abstract #T41A-2556, San Francisco, California

  27. Feuillet N (2002) Arc parallel extension and localization of volcanic complexes in Guadeloupe, Lesser Antilles. J Geophys Res 107:1–29. doi:10.1029/2001JB000308

    Article  Google Scholar 

  28. Firuzabadi D, King RW (2011) GPS precision as a function of session duration and reference frame using multi-point software. GPS Solut 16:191–196. doi:10.1007/s10291-011-0218-8

    Article  Google Scholar 

  29. Frankel A, McCann WR, Murphy AJ (1980) Observations from a seismic network in the Virgin Islands region: tectonic structures and earthquake swarms. J Geophys Res 85:2669–2678. doi:10.1029/JB085iB05p02669

    Article  Google Scholar 

  30. Gill I, Mclaughlin PP, Hubbard DK (1999) Evolution of the neogene kingshill basin of St. Croix, U.S. Virgin Islands. In: Mann P (ed) Sendimentary basins of the world, vol. 4. Caribbean Basins, Elsevier Science, Amsterdam, pp 343–366. doi:10.1016/S1874-5997(99)80047-1

    Google Scholar 

  31. Goad C (1985) Precise relative positioning determination using Global Positioning System carrier phase measurements in a nondifferenced mode. In: Proceedings of the 1st international symposium on Precise Positioning System with the Global Positioning System, US Department of Commerce, National Oceanic and Atmospheric Administration, Silver Spring, MD: 347–356

  32. Grinter T, Roberts C (2011) Precise point positioning: Where are we now? In: Proceedings of the IGNSS symposium (IGNSS2011), Sydney, Australia, 2011. http://www.lpi.nsw.gov.au/__data/assets/pdf_file/0020/165701/2011_Grinter_and_Roberts_IGNSS2011_PPP_where_are_we_now.pdf. Accessed 22 Jan 2016

  33. Herring TA, King RW, McCluskey SC (2010) Introduction to GAMIT/GLOBK, release 10.4. Massachusetts Institute of Technology, Cambridge. http://www-gpsg.mit.edu/~simon/gtgk/down.htm. Accessed 17 June 2015

  34. Hess HH, Maxwell JC (1953) Caribbean research project. Bull Geol Soc Am 64:1–6. doi:10.1130/0016-7606(1953)64

    Article  Google Scholar 

  35. Holgate SJ, Matthews A, Woodworth PL, Rickards LJ, Tamisiea ME, Bradshaw E, Foden PR, Gordon KM, Jevrejeva S, Pugh J (2013) New data systems and products at the permanent service for mean sea level. J Coast Res 29(3):493–504. doi:10.2112/JCOASTRES-D-12-00175.1

    Article  Google Scholar 

  36. Huérfano V, von Hillebrandt-Andrade CG, Báez-Sanchez G (2005) Microseismic activity reveals two stress regimes in southwestern Puerto Rico. Geol Soc Am Spec Pap 385:81–101

    Google Scholar 

  37. IGS Reference Frame Working Group (2012) IGb08: an update on IGS08. https://igscb.jpl.nasa.gov/pipermail/igsmail/2012/007853.html. Accessed 22 Jan 2016

  38. Jansma PE, Mattioli GS (2005) GPS results from Puerto Rico and the Virgin Islands: constraint on tectonic setting and rates of active faulting. Geol Soc Am Spec Paper 385:13–30. doi:10.1130/0-8137-2385-X.13

    Google Scholar 

  39. Jansma PE, Mattioli GS, Lopez A, DeMets C, Dixon TH, Mann P, Calais E (2000) Neotectonics of Puerto Rico and the Virgin Islands, northeastern Caribbean, from GPS geodesy. Tectonics 6:1021–1037

    Article  Google Scholar 

  40. Jany I, Scanlon KM, Mauffret A (1990) Geological interpretation of combined Seabeam, Gloria and seismic data from Anegada Passage (Virgin Islands, north Caribbean). Mar Geophys Res 12:173–196. doi:10.1007/BF02266712

    Article  Google Scholar 

  41. Jibson RW (1986) Evaluation of landslide hazards resulting from the 5–8 October 1985 storm in Puerto Rico. US Geological Survey Open-File Report 86–26

  42. Jibson RW (1989) Debris flows in southern Puerto Rico. Geol Soc Am Spec Pap 236:29–55

    Google Scholar 

  43. Joyce J, McCann WR, Lithgow C (1987) Onland active faulting in the Puerto Rico platelet: Eos (Transactions, American Geophysical Union) 68: 1483

  44. Kedar S, Hajj GA, Wilson BD, Heflin MB (2003) The effect of the second order GPS ionospheric correction on receiver positions. Geophys Res Lett 30(16):1144–1146

    Article  Google Scholar 

  45. Kouba J (2005) A possible detection of the 26 December 2004 great Sumatra–Andaman Islands earthquake with solution products of the int. GNSS service. Stud Geophys Geod 49:463–483

    Article  Google Scholar 

  46. Kouba J, Springer T (2001) New IGS station and satellite clock combination. GPS Solut 4(4):31–36

    Article  Google Scholar 

  47. Lander JF, Whiteside LS, Lockridge PA (2002) A brief history of tsunamis in the Caribbean Sea. Sci Tsunami Hazards 20(2):57–94

    Google Scholar 

  48. Larson KM, Freymueller JT, Philipsen S (1997) Global plate velocities from the Global Positioning System. J Geophys Res 102:9961. doi:10.1029/97JB00514

    Article  Google Scholar 

  49. Lee S, Kouba J, Schutz B, Kim DH, Lee YJ (2013) Monitoring precipitable water vapor in real-time using global navigation satellite systems. J Geod 87:923–934

    Article  Google Scholar 

  50. Lithgow C, McCann WR, Joyce J (1987) Extensional tectonics at the eastern edge of the Puerto Rico platelet. Eos (Washington, DC). 44: 1483

  51. Liu H, Wang G (2015) Relative motion between St. Croix and the Puerto Rico-Northern Virgin Islands (PRNVI) block derived from continuous GPS observations (1995–2014). Int J Geophys. doi:10.1155/2015/915753

    Google Scholar 

  52. Loureiro P (2014) Cenozoic basin evolution of the Virgin Islands basin and Anegada Passage, northeastern Caribbean. MS thesis, Department of Earth and Atmospheric Sciences, University of Houston

  53. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415

    Article  Google Scholar 

  54. Mann P, Burke K (1984) Cenozoic rift formation in the northern Caribbean. Geology 12:732–736. doi:10.1130/0091-7613(1984)12

    Article  Google Scholar 

  55. Mann P, Calais E, Ruegg JC, DeMets C, Jansma PE, Mattioli GS (2002) Oblique collision in the northeastern Caribbean from GPS measurements and geological observations. Tectonics. doi:10.1029/2001TC001304

    Google Scholar 

  56. Mann P, Prentice CS, Hippolyte J-C, Grindlay NR, Abrams LJ, Laó-Dávila D (2005) Reconnaissance study of Late Quaternary faulting along Cerro Goden fault zone, western Puerto Rico. Geol Soc Am Spec Pap 385:115–137. doi:10.1130/0-8137-2385-X.115

    Google Scholar 

  57. Masson DG, Scanlon KM (1991) The neotectonic setting of Puerto Rico. Geol Soc Am Bull 103:144–154

    Article  Google Scholar 

  58. Matthews J, Holcombe T (1976) Possible Caribbean underthrusting of the Greater Antilles along the Muertos trough. 7th Carib. Geol Conf Guadeloupe 235–242

  59. Mattioli GS, Braun JJ, Calais E, Dausz K, Feaux K, Friesen BT, Miller MM, Normandeau J, Seider E, Wang G (2012) COCONet (Continuously Operating Caribbean GPS Observation Network): goals, network status, revised scope, and project highlights. Abstracts and Program SIRGAS Annual Mtg Concepcion, Chile

    Google Scholar 

  60. McCann WR (1985) On the earthquake hazards of Puerto Rico and the Virgin Islands. Bull Seism Soc Am 75:251–262

    Google Scholar 

  61. Meltzer A (1997) Fault structure and earthquake potential of the Lajas Valley. USGS Technical Abstract, SW Puerto Rico

    Google Scholar 

  62. Meltzer A, Almy C (2000) Fault structure and earthquake potential, Lajas Valley, SW Puerto Rico: Eos (Transactions, American Geophysical Union) 81:F1181

  63. Morel L, Pottiaux E, Durand F, Fund F, Boniface K, de Oliveira PS, Baelen JV (2015) Validity and behavior of tropospheric gradients estimated by GPS in Corsica. Adv Space Res 55(1):135–149

    Article  Google Scholar 

  64. Murphy AJ, McCann WR (1979) Preliminary results from a new seismic network in the northeastern Caribbean. Bull Seism Soc Am 69:1497–1513

    Google Scholar 

  65. Nemec MC (1980) A two-phase model for the tectonic evolution of the Caribbean. Trans 9th Carib. Geol Conf St. Domingo 23–34

  66. Pearson P, Snay R (2013) Introducing HTDP 3.1 to transform coordinates across time and spatial reference frames. GPS Solut 17(1):1–17

    Article  Google Scholar 

  67. Pearson C, McCaffrey R, Elliot JL, Snay R (2010) HDTP 3.0: software for copying with the coordinate changes associated with crustal motion. J Surv Eng 136(2):80–90

    Article  Google Scholar 

  68. Pielke RP Jr, Rubiera J, Landsea Ch, Fernández ML, Klein R (2003) Hurricane vulnerability in Latin America and the Caribbean: normalized damage and loss potentials. Nat Hazards Rev 4(3):101–114

    Article  Google Scholar 

  69. Prentice CS, Mann P (2005) Paleoseismic study of the South Lajas fault: first documentation of an onshore Holocene fault in Puerto Rico. Geol Soc Am Spec Pap 385:215–222. doi:10.1130/0-8137-2385-X.215

    Google Scholar 

  70. Prentice CS, Mann P, Burr G (2000) Prehistoric earthquakes associated with a Late Quaternary fault in the Lajas Valley, southwestern Puerto Rico. EOS 81:F1182

    Google Scholar 

  71. Raussen S, Lykke-Andersen H, Kuijpers A (2013) Tectonics of the Virgin Islands basin, north eastern Caribbean. Terra 25:252–257. doi:10.1111/ter.12033

    Google Scholar 

  72. Ray J, Dong D, Altamimi Z (2004) IGS reference frames: status and future improvements. GPS Solut 8:251–266

    Article  Google Scholar 

  73. Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16(4):483–494

    Article  Google Scholar 

  74. Reid HF, Taber S (1920) The Virgin Islands earthquakes of 1867–1868. Bull Seismol Soc Am 10:9–30

    Google Scholar 

  75. Rizos C, Janssen V, Roberts C, Grinter T (2012) Precise Point Positioning: Is the Era of differential GNSS positioning drawing to an end?, TS09B, FIG Working Week 2012, Knowing to manage the territory, protect the environment, evaluate the culture heritage, Rome, Italy, 6–10 May 2012

  76. Roig-Silva CM, Asencio E, Joyce J (2013) The Northwest Trending North Boquerón Bay-Punta Montalva Fault Zone; A Through Going Active Fault System in Southwestern Puerto Rico. Seism Res Lett 84(3):538–550

    Article  Google Scholar 

  77. Silva-Tulla F (1986) The October 1985 landslide at Barrio Mameyes. Ponce, National Academy, Washington, DC

    Google Scholar 

  78. Snay RA (1999) Using HTDP software to transform spatial coordinates across time and between reference frames. Surv Land Inf Syst 59:15–25

    Google Scholar 

  79. Snay RA, Soler T (2000) Modern terrestrial reference systems. Part 2: the evolution of the NAD83. Prof Surv 20(2):16–18

    Google Scholar 

  80. Soler T, Snay RA (2004) Transforming positions and velocities between the International Terrestrial Reference Frame of 2000 and North American Datum of 1983. J Surv Eng 130:49–55. doi:10.1061/(ASCE)0733-9453(2004)130:2(49)

    Article  Google Scholar 

  81. Speed RC, Larue DK (1991) Extension and transtension in the plate boundary zone of the northeastern Caribbean. Geophys Res Lett 18:573–576. doi:10.1029/91GL00394

    Article  Google Scholar 

  82. ten Brink US (2005) Vertical motions of the Puerto Rico Trench and Puerto Rico and their cause. J Geophys Res 110:B06404. doi:10.1029/2004JB003459

    Google Scholar 

  83. ten Brink US, Lopez-Venegas AM (2012) Plate interaction in the NE Caribbean subduction zone from continuous GPS observations. Geophys Res Lett 39:L10304. doi:10.1029/2012GL051485

    Google Scholar 

  84. ten Brink US, Bakun WH, Flores CH (2011) Historical perspective on seismic hazard to Hispaniola and the northeast Caribbean region. J Geophys Res 116:B12318. doi:10.1029/2011JB008497

    Article  Google Scholar 

  85. UNAVCO (2014) Shore Drilled Braced Monument. http://pboweb.unavco.org/dmsdocs/Root%20Folder/PBO%20Operations/Miscellaneous%20Documents/SDBM%20installation.pdf. Accessed 22 Jan 2016

  86. Wang G (2011) GPS landslide monitoring: single base versus network solutions—a case study based on the Puerto Rico and Virgin Islands permanent GPS network. J Geodetic Sci 1(3):191–203. doi:10.2478/v10156-010-0022-3

    Article  Google Scholar 

  87. Wang G (2012) Kinematics of the Cerca del Cielo, Puerto Rico landslide derived from GPS observations. Landslides 9(1):117–130. doi:10.1007/s10346-011-0277-5

    Article  Google Scholar 

  88. Wang G (2013a) Millimeter-accuracy GPS landslide monitoring using precise point positioning with single receiver phase ambiguity resolution: a case study in Puerto Rico. J Geod Sci 3(1):22–31. doi:10.2478/jogs-2013-0001

    Google Scholar 

  89. Wang G (2013b) Teaching high-precision GPS to undergraduates using online processing services. J Geosci Educ 61(2):202–212. doi:10.5408/12-295.1

    Google Scholar 

  90. Wang G, Soler T (2012) OPUS for horizontal subcentimeter-accuracy landslide monitoring: case study in the Puerto Rico and Virgin Islands region. J Surv Eng 133(3):143–153. doi:10.1061/(ASCE)SU.1943-5428.0000079

    Article  Google Scholar 

  91. Wang G, Soler T (2014) Measuring land subsidence using GPS: ellipsoid height versus orthometric height. J Surv Eng 05014004:1–12. doi:10.1061/(ASCE)SU.1943-5428.0000137

    Article  Google Scholar 

  92. Wang G, Phillips D, Joyce J, Rivera FO (2011) The integration of TLS and continuous GPS to study landslide deformation: a case study in Puerto Rico. J Geodetic Sci 1(1):25–34. doi:10.2478/v10156-010-0004-5

    Article  Google Scholar 

  93. Wang G, Joyce J, Phillips D, Shrestha R, Carter W (2013a) Delineating and defining the boundaries of an active landslide in the rainforest of Puerto Rico using a combination of airborne and terrestrial LIDAR data. Landslides 10(4):503–513. doi:10.1007/s10346-013-0400-x

    Article  Google Scholar 

  94. Wang G, Yu J, Ortega J, Saenz G, Burrough T, Neill R (2013b) A stable reference frame for ground deformation study in the Houston metropolitan area Texas. J Geod Sci 3(3):188–202. doi:10.2478/jogs-2013-0021

    Google Scholar 

  95. Wang G, Kearns TJ, Yu J, Saenz G (2014) A stable reference frame for landslide monitoring using GPS in the Puerto Rico and Virgin Islands region. Landslides 11(1):119–129. doi:10.1007/s10346-013-0428-y

    Article  Google Scholar 

  96. Wang G, Bao Y, Cuddus Y, Jia X, Serna J, Jing Q (2015) A methodology to derive precise landslide displacement time series from continuous GPS observations in tectonically active and cold regions: a case study in Alaska. Nat Hazards 77(3):1939–1961. doi:10.1007/s11069-015-1684-z

    Article  Google Scholar 

  97. Yang L, Wang G, Bao Y, Kearns TJ, Yu J (2015) Comparisons of ground-based and building-based CORS: a case study in the Puerto Rico and the Virgin Islands. J Surv Eng. doi:10.1061/(ASCE)SU.1943-5428.0000155

    Google Scholar 

  98. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005

    Article  Google Scholar 

Download references

Acknowledgments

This PRSN GPS network was funded by the NSF award EAR-0722540 and the NOAA award DG133W13CN0023. This study was supported by the NSF CAREER award EAR-1229278, NSF TUES award DUE-1243582 and the NSF “COCONET” award EAR-1042906. The authors appreciate the efforts from UNAVCO and NGS for archiving GPS data for the geodesy community. The authors thank Dr. Glen Mattioli at UNAVCO, Dr. Yan Jiang at the Geological Survey of Canada, one anonymous reviewer and the editor for their comments and thoughtful suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Linqiang Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Wang, G., Huérfano, V. et al. GPS geodetic infrastructure for natural hazards study in the Puerto Rico and Virgin Islands region. Nat Hazards 83, 641–665 (2016). https://doi.org/10.1007/s11069-016-2344-7

Download citation

Keywords

  • GPS
  • Local reference frame
  • Natural hazards
  • Puerto Rico
  • Virgin Islands
  • Faulting
  • Landslide
  • Sea-level rise