Skip to main content

Hyper-resolution mapping of regional storm surge and tide flooding: comparison of static and dynamic models

Abstract

Storm tide (combination of storm surge and the astronomical tide) flooding is a natural hazard with significant global social and economic consequences. For this reason, government agencies and stakeholders need storm tide flood maps to determine population and infrastructure at risk to present and future levels of inundation. Computer models of varying complexity are able to produce regional-scale storm tide flood maps and current model types are either static or dynamic in their implementation. Static models of storm tide utilize storm tide heights to inundate locations hydrologically connected to the coast, whilst dynamic models simulate physical processes that cause flooding. Static models have been used in regional-scale storm tide flood impact assessments, but model limitations and coarse spatial resolutions contribute to uncertain impact estimates. Dynamic models are better at estimating flooding and impact but are computationally expensive. In this study we have developed a dynamic reduced-complexity model of storm tide flooding that is computationally efficient and is applied at hyper-resolutions (<100 m cell size) over regional scales. We test the performance of this dynamic reduced-complexity model and a separate static model at three test sites where storm tide observational data are available. Additionally, we perform a flood impact assessment at each site using the dynamic reduced-complexity and static model outputs. Our results show that static models can overestimate observed flood areas up to 204 % and estimate more than twice the number of people, infrastructure, and agricultural land affected by flooding. Overall we find that that a reduced-complexity dynamic model of storm tide provides more conservative estimates of coastal flooding and impact.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Aerts JCJH, Lin N, Botzen W et al (2013) Low-probability flood risk modeling for New York City. Risk Anal 33:772–788. doi:10.1111/risa.12008

    Article  Google Scholar 

  • Alfieri L, Salamon P, Bianchi A et al (2014) Advances in pan-European flood hazard mapping. Hydrol Process 28:4067–4077. doi:10.1002/hyp.9947

    Article  Google Scholar 

  • Bates PD, Dawson RJ, Hall JW et al (2005) Simplified two-dimensional numerical modelling of coastal flooding and example applications. Coast Eng 52:793–810. doi:10.1016/j.coastaleng.2005.06.001

    Article  Google Scholar 

  • Bates PD, Horritt MS, Fewtrell TJ (2010) A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. J Hydrol 387:33–45. doi:10.1016/j.jhydrol.2010.03.027

    Article  Google Scholar 

  • Baugh CA, Bates PD, Schumann G, Trigg MA (2013) SRTM vegetation removal and hydrodynamic modeling accuracy. Water Resour Res 49:5276–5289

    Article  Google Scholar 

  • Bertin X, Li K, Roland A et al (2014) A modeling-based analysis of the flooding associated with Xynthia, central Bay of Biscay. Coast Eng 94:80–89

    Article  Google Scholar 

  • Bontemps S, Defourny P, Bogaert E, et al (2011) GLOBCOVER 2009—products description and validation report. http://due.esrin.esa.int/files/GLOBCOVER2009_Validation_Report_2.2.pdf

  • Brakenridge GR, Syvitski JPM, Overeem I et al (2013) Global mapping of storm surges and the assessment of coastal vulnerability. Nat Hazards 66:1295–1312

    Article  Google Scholar 

  • Breilh JF, Chaumillon E, Bertin X, Gravelle M (2013) Assessment of static flood modeling techniques: application to contrasting marshes flooded during Xynthia (western France). Nat Hazards Earth Syst Sci 13:1595–1612

    Article  Google Scholar 

  • Chadenas C, Creach A, Mercier D (2013) The impact of storm Xynthia in 2010 on coastal flood prevention policy in France. J Coast Conserv 18:529–538

    Article  Google Scholar 

  • Cid A, Castanedo S, Abascal AJ, et al (2014) A high resolution hindcast of the meteorological sea level component for Southern Europe: the GOS dataset. Clim Dyn 43:2167–2184

    Article  Google Scholar 

  • Condon AJ, Sheng YP (2012) Evaluation of coastal inundation hazard for present and future climates. Nat Hazards 62:345–373

    Article  Google Scholar 

  • Coulthard TJ, Neal JC, Bates PD et al (2013) Integrating the LISFLOOD-FP 2D hydrodynamic model with the CAESAR model: implications for modelling landscape evolution. Earth Surf Process Landforms 38:1897–1906. doi:10.1002/esp.3478

    Article  Google Scholar 

  • Curtis KJ, Schneider A (2011) Understanding the demographic implications of climate change: estimates of localized population predictions under future scenarios of sea-level rise. Popul Environ 33:28–54

    Article  Google Scholar 

  • Dasgupta S, Laplante B, Murray S, Wheeler D (2011) Exposure of developing countries to sea-level rise and storm surges. Clim Change 106:567–579

    Article  Google Scholar 

  • DDTM-17 (2011) Éléments de mémoire sur la tempête Xynthia du 27 et 28 février 2010. http://www.charente-maritime.gouv.fr/Politiques-publiques/Environnement-risques-naturels-et-technologiques/Risques-naturels-et-technologiques/Generalites-sur-la-prevention-des-risques-naturels/Elements-de-memoire-Xynthia/Elements-de-memoire-sur-la-tempete-Xynthia-du-27-et-28-fevrier-2010

  • De Almeida GAM, Bates P, Freer JE, Souvignet M (2012) Improving the stability of a simple formulation of the shallow water equations for 2-D flood modeling. Water Resour Res. doi:10.1029/2011WR011570

    Google Scholar 

  • Dietrich JC, Zijlema M, Westerink JJ et al (2011) Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coast Eng 58:45–65

    Article  Google Scholar 

  • Emanuel KA (2013) Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc Natl Acad Sci 110:12219–12224. doi:10.1073/pnas.1301293110

    Article  Google Scholar 

  • European Environmental Agency (2006) Corine land cover 2006. http://www.eea.europa.eu/data-and-maps/data/ds_resolveuid/a47ee0d3248146908f72a8fde9939d9d. Accessed 20 May 2005

  • European Forum for Geography and Statistics (2009) Estimations carroyées de population Version 2. Gridded fiscal population 2009

  • Forbes C, Luettich RA Jr, Mattocks CA, Westerink JJ (2010) A retrospective evaluation of the storm surge produced by Hurricane Gustav (2008): forecast and hindcast results. Weather Forecast 25:1577–1602

    Article  Google Scholar 

  • Forbes C, Rhome J, Mattocks C, Taylor A (2014) Predicting the storm surge threat of Hurricane Sandy with the national weather service SLOSH model. J Mar Sci Eng 2:437–476

    Article  Google Scholar 

  • Fritz HM, Blount CD, Thwin S et al (2009) Cyclone Nargis storm surge in Myanmar. Nat Geosci 2:448–449

    Article  Google Scholar 

  • Gaughan AE, Stevens FR, Linard C et al (2013) High resolution population distribution maps for southeast Asia in 2010 and 2015. PLoS ONE 8:e55882. doi:10.1371/journal.pone.0055882

    Article  Google Scholar 

  • Gedan KB, Kirwan ML, Wolanski E et al (2011) The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Clim Change 106:7–29

    Article  Google Scholar 

  • Genovese E, Przyluski V (2013) Storm surge disaster risk management: the Xynthia case study in France. J Risk Res 16:825–841

    Article  Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2013) Projected Atlantic hurricane surge threat from rising temperatures. Proc Natl Acad Sci 110:5369–5373. doi:10.1073/pnas.1209980110

    Article  Google Scholar 

  • Haklay M, Weber P (2008) Openstreetmap: user-generated street maps. Pervasive Comput IEEE 7:12–18

    Article  Google Scholar 

  • Hinkel J, Nicholls RJ, Vafeidis AT et al (2010) Assessing risk of and adaptation to sea-level rise in the European Union: an application of DIVA. Mitig Adapt Strateg Glob Change 15:703–719

    Article  Google Scholar 

  • Hunter NM, Bates PD, Horritt MS, Wilson MD (2007) Simple spatially-distributed models for predicting flood inundation: a review. Geomorphology 90:208–225. doi:10.1016/j.geomorph.2006.10.021

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4. Available from the CGIAR-CSI SRTM 90m database available at: http://srtm.csi.cgiar.org

  • Jongman B, Ward PJ, Aerts JCJH (2012) Global exposure to river and coastal flooding: long term trends and changes. Glob Environ Change 22:823–835

    Article  Google Scholar 

  • Larsen L, Thomas C, Eppinga M, Coulthard T (2014) Exploratory modeling: extracting causality from complexity. EOS Trans Am Geophys Union 95:285–286. doi:10.1002/2014EO320001

    Article  Google Scholar 

  • Lewis M, Horsburgh K, Bates P, Smith R (2011) Quantifying the uncertainty in future coastal flood risk estimates for the UK. J Coast Res 27:870–881

    Article  Google Scholar 

  • Lewis M, Bates P, Horsburgh K et al (2013) A storm surge inundation model of the northern Bay of Bengal using publicly available data. Q J R Meteorol Soc 139:358–369. doi:10.1002/qj.2040

    Article  Google Scholar 

  • Lloyd S, Kovats RS, Chalabi Z et al (2015) Modelling the influences of climate change-associated sea-level rise and socioeconomic development on future storm surge mortality. Clim Change. doi:10.1007/s10584-015-1376-4

    Google Scholar 

  • Marcos M, Jordà G, Gomis D, Pérez B (2011) Changes in storm surges in southern Europe from a regional model under climate change scenarios. Glob Planet Change 77:116–128

    Article  Google Scholar 

  • McCallum BE, Wicklein SM, Reiser RG, et al (2013) Monitoring storm tide and flooding from hurricane Sandy along the Atlantic coast of the United States, October 2012. U.S. Department of the Interior, U.S. Geological Survey, Reston, p 42

  • McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban 19:17–37

    Article  Google Scholar 

  • McMillan HK, Brasington J (2007) Reduced complexity strategies for modelling urban floodplain inundation. Geomorphology 90:226–243

    Article  Google Scholar 

  • Mokrech M, Kebede AS, Nicholls RJ, et al (2014) An integrated approach for assessing flood impacts due to future climate and socio-economic conditions and the scope of adaptation in Europe. Clim Change 128:245–260

    Article  Google Scholar 

  • Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ (2015) Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS ONE 10:e0118571

    Article  Google Scholar 

  • Nicholls RJ (2003) An expert assessment of storm surge “hotspots.” Interim Report to Center for Hazards and Risk Research, Lamont-Doherty Observatory, Columbia University. Flood Hazard Research Centre, University of Middlesex, London

  • Quinn N, Lewis M, Wadey MP, Haigh ID (2014) Assessing the temporal variability in extreme storm-tide time series for coastal flood risk assessment. J Geophys Res Ocean 119:4983–4998. doi:10.1002/2014JC010197

    Article  Google Scholar 

  • Rappaport EN (2014) Fatalities in the United States from Atlantic tropical cyclones: new data and interpretation. Bull Am Meteorol Soc 95:341–346

    Article  Google Scholar 

  • Report MW (2013) Deaths associated with hurricane Sandy—October–November 2012. MMWR Morb Mortal Wkly Rep 62:393–397

    Google Scholar 

  • Saito K, Kuroda T, Kunii M, Kohno N (2010) Numerical simulation of Myanmar cyclone Nargis and the associated storm surge part II: ensemble prediction. 気象集誌 第 2 輯 88:547–570

  • Savage JTS, Bates P, Freer J et al (2015) When does spatial resolution become spurious in probabilistic flood inundation predictions? Hydrol Process. doi:10.1002/hyp.10749

    Google Scholar 

  • Sayama T, Myo Lin N, Fukami K, et al (2012) Storm surge inundation simulation of cyclone Nargis with a rainfall-runoff-inundation model. J Jpn Soc Civ Eng Ser B1 67:529–534

    Google Scholar 

  • Schumann GJ-P, Andreadis KM, Bates PD (2014) Downscaling coarse grid hydrodynamic model simulations over large domains. J Hydrol 508:289–298

    Article  Google Scholar 

  • Simard M, Pinto N, Fisher JB, Baccini A (2011) Mapping forest canopy height globally with spaceborne lidar. J Geophys Res Biogeosci 116:G04021

    Google Scholar 

  • Skinner CJ, Coulthard TJ, Parsons DR et al (2015) Simulating tidal and storm surge hydraulics with a simple 2D inertia based model, in the Humber Estuary. UK Estuar Coast Shelf Sci. doi:10.1016/j.ecss.2015.01.019

    Google Scholar 

  • Smith AB, Katz RW (2013) US billion-dollar weather and climate disasters: data sources, trends, accuracy and biases. Nat Hazards 67:387–410

    Article  Google Scholar 

  • Smith RAE, Bates PD, Hayes C (2012) Evaluation of a coastal flood inundation model using hard and soft data. Environ Model Softw 30:35–46. doi:10.1016/j.envsoft.2011.11.008

    Google Scholar 

  • Stephens EM, Bates PD, Freer JE, Mason DC (2012) The impact of uncertainty in satellite data on the assessment of flood inundation models. J Hydrol 414:162–173

    Article  Google Scholar 

  • Stocker TF, Qin D, Plattner G-K, et al (2013) Climate change 2013: the physical science basis. In: Working group I contributions to the IPCC fifth assessment report of the intergovernmental panel on climate change (AR5). Cambridge University Press, New York

  • Torresan S, Critto A, Rizzi J, Marcomini A (2012) Assessment of coastal vulnerability to climate change hazards at the regional scale: the case study of the North Adriatic Sea. Nat Hazards Earth Syst Sci 12:2347–2368

    Article  Google Scholar 

  • UNOSAT (2008) Flood assesment for cyclone Nargis affected Ayeyarwady division, Myanmar. http://www.unitar.org/unosat/

  • U.S. Census Bureau (2010) Population and housing unit counts—blocks. https://www.census.gov/geo/maps-data/data/tiger-data.html

  • Weatherall P, Marks KM, Jakobsson M et al (2015) A new digital bathymetric model of the world’s oceans. Earth Space Sci 2:331–345. doi:10.1002/2015EA000107

    Article  Google Scholar 

  • Wilson M, Bates P, Alsdorf D et al (2007) Modeling large-scale inundation of Amazonian seasonally flooded wetlands. Geophys Res Lett. doi:10.1029/2007GL030156

    Google Scholar 

  • Yu D, Lane SN (2006) Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 2: development of a sub-grid-scale treatment. Hydrol Process 20:1567–1583

    Article  Google Scholar 

  • Zervas C (2013) Extreme water levels of the United States 1893–2010 NOAA technical report NOS CO-OPS 067

Download references

Acknowledgments

The authors wish to thank the two anonymous reviewers. CAESAR-Lisflood is available from http://sourceforge.net/projects/caesar-lisflood/, and the source code for the modified version of CAESAR-Lisflood used in this study can be obtained from Jorge Ramirez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Ramirez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramirez, J.A., Lichter, M., Coulthard, T.J. et al. Hyper-resolution mapping of regional storm surge and tide flooding: comparison of static and dynamic models. Nat Hazards 82, 571–590 (2016). https://doi.org/10.1007/s11069-016-2198-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2198-z

Keywords

  • Storm surge
  • Storm tide
  • Hydrodynamic model
  • Flooding
  • Impact assessment
  • Reduced-complexity