Skip to main content
Log in

A reliability-based method for taking into account snowfall return period in the design of buildings in avalanche-prone areas

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

For many natural hazards, design codes include simple approaches, based on semi-probabilistic methods, which allow the engineer to check the structural safety of the construction. This framework implements the socioeconomic optimization of the resources to be used to build construction works. At present no simple approaches have been formulated for snow avalanche hazard. Recent research focuses on fully probabilistic assessment of structural safety, aimed at the estimation of the failure probability of the element at risk. This strategy requires a large amount of data and complex simulation techniques. In order to propose the implementation of snow avalanche hazard into the framework of modern design codes, we suggest an approach based on different avalanche scenarios with different snowfall return periods depending on the consequences of failure of the designed construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ancey C, Meunier M, Richard D (2003) Inverse problem in avalanche dynamics models. Water Resour Res 39(4):1099

    Google Scholar 

  • Ancey C, Gervasoni C, Meunier M (2004) Computing extreme avalanches. Cold Reg Sci Technol 39:161–184

    Article  Google Scholar 

  • Arnalds T, Jónasson K, Sigurðsson S (2004) Avalanche hazard zoning in Iceland based on individual risk. Ann Glaciol 38(1):285–290

    Article  Google Scholar 

  • ASCE (2010) Minimum design loads for buildings and other structures, ASCE 7-10. American Society of Civil Engineers, Reston

    Google Scholar 

  • Barbolini M, Natale L, Cordola M, Tecilla G (2005) Linee guida metodologiche per la perimetrazione delle aree esposte al pericolo di valanghe. AINEVA; Università degli studi di Pavia, Dipartimento di ingegneria idraulica e ambientale, Pavia

  • Basler E (1960) Untersuchungen über den Sicherheitsbegriff von Bauwerken. Ph.D. thesis, ETH Zürich

  • Bertrand D, Naaim M, Brun M (2010) Physical vulnerability of reinforced concrete buildings impacted by snow avalanches. Nat Hazards Earth Syst Sci 10(7):1531–1545

    Article  Google Scholar 

  • Bocchiola D, Medagliani M, Rosso R (2006) Regional snow depth frequency curves for avalanche hazard mapping in central Italian Alps. Cold Reg Sci Technol 46:204–221

    Article  Google Scholar 

  • Bocchiola D, Bianchi E, Gorni E, Marty C, Sovilla B (2008) Regional evaluation of three day snow depth for avalanche hazard mapping in Switzerland. Nat Hazards Earth Syst Sci 8:685–705

    Article  Google Scholar 

  • Burkard A, Salm B (1992) Die Bestimmung der Mittleren Anrissmächtigkeit \(d_0\) zur Berechnung von Fliesslawinen. Technical Report 668, Eidgenössisches Inst. für Schnee- und Lawinenforschung

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606

    Google Scholar 

  • Cornell CA (1969) A probability-based structural code. ACI J Proc 66:974–985

    Google Scholar 

  • CSLLPP (2008) Nuove Norme Tecniche per le Costruzioni–DM 14.01.2008. Consiglio Superiore dei Lavori Pubblici

  • De Biagi V, Chiaia B, Frigo B (2015) Impact of snow avalanche on buildings: forces estimation from structural back-analyses. Eng Struct 92:15–28

    Article  Google Scholar 

  • Diamantidis D, Bazzurro P (2007) Safety acceptance criteria for existing structures. In: Special workshop on risk acceptance and risk communication, Stanford University, p 10

  • Eckert N, Naaim M, Parent E (2010) Long-term avalanche hazard assessment with a Bayesian depth-averaged propagation model. J Glaciol 56(198):563–586

    Article  Google Scholar 

  • Eckert N, Keylock CJ, Bertrand D, Parent E, Faug T, Favier P, Naaim M (2012) Quantitative risk and optimal design approaches in the snow avalanche field: review and extensions. Cold Reg Sci Technol 79–80:1–19

    Article  Google Scholar 

  • Elishakoff I (1999) Probabilistic theory of structures. Courier Dover Publications, New York

    Google Scholar 

  • European Standard (2002) Eurocode 0: basis of structural design. European Committee for Standardization, Brussels

    Google Scholar 

  • European Standard (2004) Eurocode 8: design of structures for earthquake resistance. Part 1: general rules, seismic actions and rules for buildings. European Committee for Standardization, Brussels

    Google Scholar 

  • European Standard (2005) Eurocode 1: actions on structures. Part 1–4: general actions–Wind actions. European Committee for Standardization, Brussels

    Google Scholar 

  • European Standard (2006) Eurocode 1: actions on structures. Part 1–7: general actions–accidental actions. European Committee for Standardization, Brussels

    Google Scholar 

  • Faber MH, Sørensen JD (2002) Reliability based code calibration. The Joint Committee on Structural Safety, Zürich

    Google Scholar 

  • Favier P, Bertrand D, Eckert N, Naaim M (2014) A reliability assessment of physical vulnerability of reinforced concrete walls loaded by snow avalanches. Nat Hazards Earth Syst Sci 14(3):689–704

    Article  Google Scholar 

  • Favier P, Eckert N, Bertrand D, Naaim M (2014) Sensitivity of avalanche risk evaluation to vulnerability relations. Cold Reg Sci Technol 108:163–177

    Article  Google Scholar 

  • FEMA (2000) Prestandard and commentary for the seismic rehabilitation of buildings: FEMA-356. Federal Emergency Management Agency, Washington

    Google Scholar 

  • ISO (1998) General principles on reliability for structures ISO 2394:1998. International Organization for Standardization, Genève

    Google Scholar 

  • Jónasson K, Sigurðsson SÞ Arnalds Þ (1999) Estimation of avalanche risk. Technical report, Rit Veðurstofu Íslands

  • Keiler M, Sailer R, Jörg P, Weber C, Fuchs S, Zischg A, Sauermoser S (2006) Avalanche risk assessment—a multi-temporal approach, results from Galtür, Austria. Nat Hazards Earth Syst Sci 6:637–651

    Article  Google Scholar 

  • Keylock CJ, McClung DM, Mar Magnússon M (1999) Avalanche risk mapping by simulation. J Glaciol 45(150):303–314

    Article  Google Scholar 

  • Leporati E (1979) The assessment of structural safety. Research Studies Press, Forest Grove

    Google Scholar 

  • Lied K (1993) Snow avalanche experience through 20 years. Norges Geotekniske Institutt (Laurits Bjerrums Minneforedrag 14), Oslo

  • Madsen HO, Krenk S, Lind NC (2006) Methods of structural safety. Courier Dover Publications, New York

    Google Scholar 

  • Melchers RE (1999) Structural reliability analysis and prediction. Wiley, New York

    Google Scholar 

  • Mihaylov B (2006) Analysis of code procedures for assessment of existing buildings: Italian Seismic Code, EC8, ATC-40, FEMA356, FEMA440. Ph.D. thesis, European School for Advanced Studies in Reduction of Seismic Risk. Univeristy of Pavia

  • Naaim M, Durand Y, Eckert N, Chambon G (2013) Dense avalanche friction coefficients: influence of physical properties of snow. J Glaciol 59(216):771–782

    Article  Google Scholar 

  • Salm B, Burkhard A, Gubler H (1990) Berechnung von Fliesslawinen: eine Anleitung fuer Praktiker; mit Beispielen. Eidgenössisches Inst. für Schnee- und Lawinenforschung

  • Santucci de Magistris F (2011) Beyond EC8: the new Italian seismic code. Geofizika 28:65–82

    Google Scholar 

  • Schläppy R, Eckert N, Jomelli V, Stoffel M, Grancher D, Brunstein D, Naaim M, Deschatres M (2014) Validation of extreme snow avalanches and related return periods derived from a statistical-dynamical model using tree-ring techniques. Cold Reg Sci Technol 99:12–26

    Article  Google Scholar 

  • Schneider J (2006) Introduction to safety and reliability of structures, vol 5. IABSE, Zurich

    Google Scholar 

  • Schweizer J, Mitterer C, Stoffel L (2009) On forecasting large and infrequent snow avalanches. Cold Reg Sci Technol 59(2):234–241

    Article  Google Scholar 

  • Schweizerischer Ingenieur- und Architektenverein (2003) SIA 261: actions on structures. Swiss Society of Engineers and Architects, Zürich

  • SLF (2005) AVAL-1D–Manual. Institut für Schnee-und Lawinenforschung SLF, Davos

  • Wang Z, Ormsbee L (2005) Comparison between probabilistic seismic hazard analysis and flood frequency analysis. EOS Trans Am Geophys Union 86:45–52

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio De Biagi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Biagi, V., Barbero, M. & Borri-Brunetto, M. A reliability-based method for taking into account snowfall return period in the design of buildings in avalanche-prone areas. Nat Hazards 81, 1901–1912 (2016). https://doi.org/10.1007/s11069-016-2161-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2161-z

Keywords

Navigation