Abstract
Tsunami propagation simulation over the full-global ocean with a finite-difference method is carried out using a grid rotation transformation in a latitude–longitude coordinate system. Two singular points (North/South Poles) that are antipodes with each other in the latitude–longitude coordinate are both moved to land using the grid rotation transformation. The moved singular points are also antipodes with each other. We provide algebra to represent the grid rotation and propose two candidates of the moved singular points for practical use. One is that the computational North Pole is moved to China, and the other is the computational pole moved to Greenland. We carry out tsunami propagation simulation over the global ocean for the different candidates of the moved singular points and evaluate numerical errors due to the grid rotation transformation. The numerical errors are found to be more reduced with finer resolution of the spatial grid for the simulation. When the spatial resolution is fixed, the numerical errors are reduced over most regions for the case with the computational North Pole moved to Greenland, more than the case with the pole moved to China. We indicate that the Coriolis force effect on the tsunamis that was expected to be minor even in far fields becomes significant after long propagation (>~1 day).
This is a preview of subscription content, access via your institution.









References
Allgeyer S, Cummins P (2014) Numerical tsunami simulation including elastic loading and seawater density stratification. Geophys Res Lett 41:2368–2375. doi:10.1002/2014GL059348
Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Tech Memo NESDIS NGDC-24, National Geophysical Data Center, NOAA, Boulder. doi:10.7289/V5C8276M
Bentsen M, Evensen G, Drange H, Jenkins AD (1999) Coordinate transformation on a sphere using conformal mapping. Mon Weather Rev 127:2733–2740. doi:10.1175/1520-0493(1999)127<2733:CTOASU>2.0.CO;2
Blaise S, St-Cyr A (2012) A dynamic hp-adaptive discontinuous Galerkin method for shallow-water flows on the sphere with application to a global tsunami simulation. Mon Weather Rev 140:978–996. doi:10.1175/MWR-D-11-00038.1
Borrero JC, Sieh K, Chlieh M, Synolakis CE (2006) Tsunami inundation modeling for western Sumatra. Proc Natl Acad Sci USA 103:19673–19677. doi:10.1073/pnas.0604069103
Choi BH, Pelinovsky E, Kim KO, Lee JS (2003) Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption. Nat Hazards Earth Syst Sci 3:321–332. doi:10.5194/nhess-3-321-2003
Eakins BW, Taylor LA (2010) Seamlessly integrating bathymetric and topographic data to support tsunami modeling and forecasting efforts. In: Breman J (ed) Ocean globe. ESRI Press, Redlands, pp 37–56
Goto C (1991) Numerical simulation of the trans-oceanic propagation of tsunami. Rep Port Harb Res Inst 30:3–19 (in Japanese with English abstract)
Goto C, Imamura F, Shuto N (1988) Study on numerical simulation of the transoceanic propagation of tsunami. Part 1: governing equation and mesh length. Zisin 2(41):515–526 (in Japanese with English abstract)
Goto K, Fujima K, Sugawara D, Fujino S, Imai K, Tsudaka R, Abe T, Haraguchi T (2012) Field measurements and numerical modeling for the run-up heights and inundation distances of the 2011 Tohoku-oki tsunami at Sendai Plain, Japan. Earth Planets Space 64:1247–1257. doi:10.5047/eps.2012.02.007
Hasumi H (2007) CCSR Ocean Component Model (COCO). version 4.0. Cent Clim Syst Res Rep 25, The University of Tokyo, Tokyo
Hwang L-S, Butler HL, Divoky DJ (1972) Tsunami model: generation and open-sea characteristics. Bull Seismol Soc Am 62:1579–1596
Imamura F, Shuto N, Goto C (1988) Numerical simulations of the transoceanic propagation of tsunamis. In: Proceedings of the 6th congress of Asian and Pacific regional division of the International Association for Hydraulic Research, vol 6, pp 265–272
Imamura F, Shuto N, Goto C (1990) Study on numerical simulation of the transoceanic propagation of tsunami. Part 2: characteristics of tsunami propagating over the Pacific Ocean. Zisin 2(43):389–402 (in Japanese with English abstract)
Inazu D, Saito T (2013) Simulation of distant tsunami propagation with a radial loading deformation effect. Earth Planets Space 65:835–842. doi:10.5047/eps.2013.03.010
Inazu D, Hino R, Fujimoto H (2012) A global barotropic ocean model driven by synoptic atmospheric disturbances for detecting seafloor vertical displacements from in situ ocean bottom pressure measurements. Mar Geophys Res 33:127–148. doi:10.1007/s11001-012-9151-7
Kawai H, Satoh M, Kawaguchi K, Seki K (2012) The 2011 off the Pacific coast of Tohoku earthquake tsunami observed by the GPS Buoys, seabed wave gauges, and coastal tide gauges of NOWPHAS on the Japanese coast. In: Proceedings of the 22nd international offshore and polar engineering conference, pp 20–27
Kirby JT, Shi F, Tehranirad B, Harris JC, Grilli ST (2013) Dispersive tsunami waves in the ocean: model equations and sensitivity to dispersion and Coriolis effects. Ocean Model 62:39–55. doi:10.1016/j.ocemod.2012.11.009
Kowalik Z, Knight W, Logan T, Whitmore P (2005) Numerical modeling of the global tsunami: Indonesian tsunami of 26 December 2004. Sci Tsunami Hazards 23:40–56
Kowalik Z, Knight W, Logan T, Whitmore P (2007) The tsunami of 26 December, 2004: numerical modeling and energy considerations. Pure Appl Geophys 164:379–393. doi:10.1007/978-3-7643-8364-0_6
Levin B, Nosov M (2009) The physics of tsunami formation by sources of nonseismic origin. In: Levin B, Nosov M (eds) Physics of tsunamis. Springer, Netherlands, pp 153–195
Liu, PL-F, Woo S-B, Cho Y-S (1998) Computer programs for tsunami propagation and inundation. Technical report, Cornell University, Ithaca
Marine Information Research Center (2003) JTOPO30—bathymetric data around Japan with 30-arcsec grid. Jpn Hydrogr As. http://www.mirc.jha.jp/products/finished/JTOPO30/. Accessed 19 Sept 2014 (in Japanese)
Matsui T, Imamura F, Tajika E, Nakano Y, Fujisawa Y (2002) Generation and propagation of a tsunami from the Cretaceous-Tertiary impact event. In: Koeberl C, MacLeod KG (ed) Catastrophic events and mass extinctions: Impacts and Beyond. Geol Soc Am Spec Pap 356:69–77. doi:10.1130/0-8137-2356-6.69
Matsumoto H (2014) The tsunami and its impact. In: Japan Society of Civil Engineers (ed) Report on the Great East Japan Earthquake Disaster 2. Maruzen, Tokyo, pp 40–51 (in Japanese)
Oka A, Hasumi H (2004) Effects of freshwater forcing on the Atlantic deep circulation: a study with an OGCM forced by two different surface freshwater flux datasets. J Clim 17:2180–2194. doi:10.1175/1520-0442(2004)017<2180:EOFFOT>2.0.CO;2
Saito T, Ito Y, Inazu D, Hino R (2011) Tsunami source of the 2011 Tohoku-Oki earthquake, Japan: Inversion analysis based on dispersive tsunami simulations. Geophys Res Lett 38:L00G19. doi:10.1029/2011GL049089
Saito T, Inazu D, Tanaka S, Miyoshi T (2013) Tsunami coda across the Pacific Ocean following the 2011 Tohoku-Oki earthquake. Bull Seismol Soc Am 103:1429–1443. doi:10.1785/0120120183
Saito T, Inazu D, Miyoshi T, Hino R (2014) Dispersion and nonlinear effects in the 2011 Tohoku-Oki earthquake tsunami. J Geophys Res Oceans 119:5160–5180. doi:10.1002/2014JC009971
Sakamoto TT, Komuro Y, Nishimura T, Ishii M, Tatebe H, Shiogama H, Hasegawa A, Toyoda T, Mori M, Suzuki T, Imada Y, Nozawa T, Takata K, Mochizuki T, Ogochi K, Emori S, Hasumi H, Kimoto M (2012) MIROC4h—a new high-resolution atmosphere–ocean coupled general circulation model. J Meteorol Soc Jpn 90:325–359. doi:10.2151/jmsj.2012-301
Satake K (1995) Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami. Pure appl Geophys 144:455–470. doi:10.1007/BF00874378
Satake K, Somerville PG (1992) Location and size of the 1927 Lompoc, California, earthquake from tsunami data. Bull Seismol Soc Am 82:1710–1725
Tang L, Titov VV, Bernard EN, Wei Y, Chamberlin CD, Newman JC, Mofjeld HO, Arcas D, Eble MC, Moore C, Uslu B, Pells C, Spillane M, Wright L, Gica E (2012) Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements. J Geophys Res Oceans 117:C08008. doi:10.1029/2011JC007635
Titov V, González FI (1997) Implementation and testing of the method of splitting tsunami (MOST) model. NOAA Tech Memo ERL PMEL-112 (PB98-122773), NOAA/Pacific Marine Environmental Laboratory, Seattle
Titov V, Rabinovich AB, Mofjeld HO, Thomson RE, González FI (2005) The global reach of the 26 December 2004 Sumatra tsunami. Science 309:2045–2048. doi:10.1126/science.1114576
Ward SN, Asphaug E (2003) Asteroid impact tsunami of 2880 March 16. Geophys J Int 153:F6–F10. doi:10.1046/j.1365-246X.2003.01944.x
Watada S, Kusumoto S, Satake K (2014) Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth. J Geophys Res Solid Earth 119:4287–4310. doi:10.1002/2013JB010841
Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335. doi:10.1175/2010JCLI3679.1
Weaver AJ, Eby M, Wiebe EC, Bitz CM, Duffy PB, Ewen TL, Fanning AF, Holland MM, MacFadyen A, Matthews HD, Meissner KJ, Saenko O, Schmittner A, Wang H, Yoshimori M (2001) The UVic earth system climate model: model description, climatology, and applications to past, present and future climates. Atmos Ocean 39:361–428. doi:10.1080/07055900.2001.9649686
Yoshida S, Hirose N (2008) Non-isostatic sea-level variability simulated using a global barotropic ocean model. Pac Oceanogr 4:27–35
Acknowledgments
This study was supported by the NIED (National Research Institute for Earth Science and Disaster Prevention) project for “Research on Tsunamis and Earthquakes for Creation of a Disaster Mitigation System”. Simulations were carried out by the supercomputer system of NIED, and that of Earthquake Research Institute, The University of Tokyo. The manuscript was improved by comments from two anonymous reviewers.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Inazu, D., Saito, T. Global tsunami simulation using a grid rotation transformation in a latitude–longitude coordinate system. Nat Hazards 80, 759–773 (2016). https://doi.org/10.1007/s11069-015-1995-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11069-015-1995-0