Natural Hazards

, Volume 80, Issue 2, pp 759–773 | Cite as

Global tsunami simulation using a grid rotation transformation in a latitude–longitude coordinate system

  • Daisuke Inazu
  • Tatsuhiko Saito
Original Paper


Tsunami propagation simulation over the full-global ocean with a finite-difference method is carried out using a grid rotation transformation in a latitude–longitude coordinate system. Two singular points (North/South Poles) that are antipodes with each other in the latitude–longitude coordinate are both moved to land using the grid rotation transformation. The moved singular points are also antipodes with each other. We provide algebra to represent the grid rotation and propose two candidates of the moved singular points for practical use. One is that the computational North Pole is moved to China, and the other is the computational pole moved to Greenland. We carry out tsunami propagation simulation over the global ocean for the different candidates of the moved singular points and evaluate numerical errors due to the grid rotation transformation. The numerical errors are found to be more reduced with finer resolution of the spatial grid for the simulation. When the spatial resolution is fixed, the numerical errors are reduced over most regions for the case with the computational North Pole moved to Greenland, more than the case with the pole moved to China. We indicate that the Coriolis force effect on the tsunamis that was expected to be minor even in far fields becomes significant after long propagation (>~1 day).


Tsunami simulation Global ocean Grid rotation 



This study was supported by the NIED (National Research Institute for Earth Science and Disaster Prevention) project for “Research on Tsunamis and Earthquakes for Creation of a Disaster Mitigation System”. Simulations were carried out by the supercomputer system of NIED, and that of Earthquake Research Institute, The University of Tokyo. The manuscript was improved by comments from two anonymous reviewers.


  1. Allgeyer S, Cummins P (2014) Numerical tsunami simulation including elastic loading and seawater density stratification. Geophys Res Lett 41:2368–2375. doi: 10.1002/2014GL059348 CrossRefGoogle Scholar
  2. Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Tech Memo NESDIS NGDC-24, National Geophysical Data Center, NOAA, Boulder. doi: 10.7289/V5C8276M
  3. Bentsen M, Evensen G, Drange H, Jenkins AD (1999) Coordinate transformation on a sphere using conformal mapping. Mon Weather Rev 127:2733–2740. doi: 10.1175/1520-0493(1999)127<2733:CTOASU>2.0.CO;2 CrossRefGoogle Scholar
  4. Blaise S, St-Cyr A (2012) A dynamic hp-adaptive discontinuous Galerkin method for shallow-water flows on the sphere with application to a global tsunami simulation. Mon Weather Rev 140:978–996. doi: 10.1175/MWR-D-11-00038.1 CrossRefGoogle Scholar
  5. Borrero JC, Sieh K, Chlieh M, Synolakis CE (2006) Tsunami inundation modeling for western Sumatra. Proc Natl Acad Sci USA 103:19673–19677. doi: 10.1073/pnas.0604069103 CrossRefGoogle Scholar
  6. Choi BH, Pelinovsky E, Kim KO, Lee JS (2003) Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption. Nat Hazards Earth Syst Sci 3:321–332. doi: 10.5194/nhess-3-321-2003 CrossRefGoogle Scholar
  7. Eakins BW, Taylor LA (2010) Seamlessly integrating bathymetric and topographic data to support tsunami modeling and forecasting efforts. In: Breman J (ed) Ocean globe. ESRI Press, Redlands, pp 37–56Google Scholar
  8. Goto C (1991) Numerical simulation of the trans-oceanic propagation of tsunami. Rep Port Harb Res Inst 30:3–19 (in Japanese with English abstract) Google Scholar
  9. Goto C, Imamura F, Shuto N (1988) Study on numerical simulation of the transoceanic propagation of tsunami. Part 1: governing equation and mesh length. Zisin 2(41):515–526 (in Japanese with English abstract) Google Scholar
  10. Goto K, Fujima K, Sugawara D, Fujino S, Imai K, Tsudaka R, Abe T, Haraguchi T (2012) Field measurements and numerical modeling for the run-up heights and inundation distances of the 2011 Tohoku-oki tsunami at Sendai Plain, Japan. Earth Planets Space 64:1247–1257. doi: 10.5047/eps.2012.02.007 CrossRefGoogle Scholar
  11. Hasumi H (2007) CCSR Ocean Component Model (COCO). version 4.0. Cent Clim Syst Res Rep 25, The University of Tokyo, TokyoGoogle Scholar
  12. Hwang L-S, Butler HL, Divoky DJ (1972) Tsunami model: generation and open-sea characteristics. Bull Seismol Soc Am 62:1579–1596Google Scholar
  13. Imamura F, Shuto N, Goto C (1988) Numerical simulations of the transoceanic propagation of tsunamis. In: Proceedings of the 6th congress of Asian and Pacific regional division of the International Association for Hydraulic Research, vol 6, pp 265–272Google Scholar
  14. Imamura F, Shuto N, Goto C (1990) Study on numerical simulation of the transoceanic propagation of tsunami. Part 2: characteristics of tsunami propagating over the Pacific Ocean. Zisin 2(43):389–402 (in Japanese with English abstract) Google Scholar
  15. Inazu D, Saito T (2013) Simulation of distant tsunami propagation with a radial loading deformation effect. Earth Planets Space 65:835–842. doi: 10.5047/eps.2013.03.010 CrossRefGoogle Scholar
  16. Inazu D, Hino R, Fujimoto H (2012) A global barotropic ocean model driven by synoptic atmospheric disturbances for detecting seafloor vertical displacements from in situ ocean bottom pressure measurements. Mar Geophys Res 33:127–148. doi: 10.1007/s11001-012-9151-7 CrossRefGoogle Scholar
  17. Kawai H, Satoh M, Kawaguchi K, Seki K (2012) The 2011 off the Pacific coast of Tohoku earthquake tsunami observed by the GPS Buoys, seabed wave gauges, and coastal tide gauges of NOWPHAS on the Japanese coast. In: Proceedings of the 22nd international offshore and polar engineering conference, pp 20–27Google Scholar
  18. Kirby JT, Shi F, Tehranirad B, Harris JC, Grilli ST (2013) Dispersive tsunami waves in the ocean: model equations and sensitivity to dispersion and Coriolis effects. Ocean Model 62:39–55. doi: 10.1016/j.ocemod.2012.11.009 CrossRefGoogle Scholar
  19. Kowalik Z, Knight W, Logan T, Whitmore P (2005) Numerical modeling of the global tsunami: Indonesian tsunami of 26 December 2004. Sci Tsunami Hazards 23:40–56Google Scholar
  20. Kowalik Z, Knight W, Logan T, Whitmore P (2007) The tsunami of 26 December, 2004: numerical modeling and energy considerations. Pure Appl Geophys 164:379–393. doi: 10.1007/978-3-7643-8364-0_6 CrossRefGoogle Scholar
  21. Levin B, Nosov M (2009) The physics of tsunami formation by sources of nonseismic origin. In: Levin B, Nosov M (eds) Physics of tsunamis. Springer, Netherlands, pp 153–195Google Scholar
  22. Liu, PL-F, Woo S-B, Cho Y-S (1998) Computer programs for tsunami propagation and inundation. Technical report, Cornell University, IthacaGoogle Scholar
  23. Marine Information Research Center (2003) JTOPO30—bathymetric data around Japan with 30-arcsec grid. Jpn Hydrogr As. Accessed 19 Sept 2014 (in Japanese)
  24. Matsui T, Imamura F, Tajika E, Nakano Y, Fujisawa Y (2002) Generation and propagation of a tsunami from the Cretaceous-Tertiary impact event. In: Koeberl C, MacLeod KG (ed) Catastrophic events and mass extinctions: Impacts and Beyond. Geol Soc Am Spec Pap 356:69–77. doi: 10.1130/0-8137-2356-6.69
  25. Matsumoto H (2014) The tsunami and its impact. In: Japan Society of Civil Engineers (ed) Report on the Great East Japan Earthquake Disaster 2. Maruzen, Tokyo, pp 40–51 (in Japanese) Google Scholar
  26. Oka A, Hasumi H (2004) Effects of freshwater forcing on the Atlantic deep circulation: a study with an OGCM forced by two different surface freshwater flux datasets. J Clim 17:2180–2194. doi: 10.1175/1520-0442(2004)017<2180:EOFFOT>2.0.CO;2 CrossRefGoogle Scholar
  27. Saito T, Ito Y, Inazu D, Hino R (2011) Tsunami source of the 2011 Tohoku-Oki earthquake, Japan: Inversion analysis based on dispersive tsunami simulations. Geophys Res Lett 38:L00G19. doi: 10.1029/2011GL049089 CrossRefGoogle Scholar
  28. Saito T, Inazu D, Tanaka S, Miyoshi T (2013) Tsunami coda across the Pacific Ocean following the 2011 Tohoku-Oki earthquake. Bull Seismol Soc Am 103:1429–1443. doi: 10.1785/0120120183 CrossRefGoogle Scholar
  29. Saito T, Inazu D, Miyoshi T, Hino R (2014) Dispersion and nonlinear effects in the 2011 Tohoku-Oki earthquake tsunami. J Geophys Res Oceans 119:5160–5180. doi: 10.1002/2014JC009971 CrossRefGoogle Scholar
  30. Sakamoto TT, Komuro Y, Nishimura T, Ishii M, Tatebe H, Shiogama H, Hasegawa A, Toyoda T, Mori M, Suzuki T, Imada Y, Nozawa T, Takata K, Mochizuki T, Ogochi K, Emori S, Hasumi H, Kimoto M (2012) MIROC4h—a new high-resolution atmosphere–ocean coupled general circulation model. J Meteorol Soc Jpn 90:325–359. doi: 10.2151/jmsj.2012-301 CrossRefGoogle Scholar
  31. Satake K (1995) Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami. Pure appl Geophys 144:455–470. doi: 10.1007/BF00874378 CrossRefGoogle Scholar
  32. Satake K, Somerville PG (1992) Location and size of the 1927 Lompoc, California, earthquake from tsunami data. Bull Seismol Soc Am 82:1710–1725Google Scholar
  33. Tang L, Titov VV, Bernard EN, Wei Y, Chamberlin CD, Newman JC, Mofjeld HO, Arcas D, Eble MC, Moore C, Uslu B, Pells C, Spillane M, Wright L, Gica E (2012) Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements. J Geophys Res Oceans 117:C08008. doi: 10.1029/2011JC007635 Google Scholar
  34. Titov V, González FI (1997) Implementation and testing of the method of splitting tsunami (MOST) model. NOAA Tech Memo ERL PMEL-112 (PB98-122773), NOAA/Pacific Marine Environmental Laboratory, SeattleGoogle Scholar
  35. Titov V, Rabinovich AB, Mofjeld HO, Thomson RE, González FI (2005) The global reach of the 26 December 2004 Sumatra tsunami. Science 309:2045–2048. doi: 10.1126/science.1114576 CrossRefGoogle Scholar
  36. Ward SN, Asphaug E (2003) Asteroid impact tsunami of 2880 March 16. Geophys J Int 153:F6–F10. doi: 10.1046/j.1365-246X.2003.01944.x CrossRefGoogle Scholar
  37. Watada S, Kusumoto S, Satake K (2014) Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth. J Geophys Res Solid Earth 119:4287–4310. doi: 10.1002/2013JB010841 CrossRefGoogle Scholar
  38. Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335. doi: 10.1175/2010JCLI3679.1 CrossRefGoogle Scholar
  39. Weaver AJ, Eby M, Wiebe EC, Bitz CM, Duffy PB, Ewen TL, Fanning AF, Holland MM, MacFadyen A, Matthews HD, Meissner KJ, Saenko O, Schmittner A, Wang H, Yoshimori M (2001) The UVic earth system climate model: model description, climatology, and applications to past, present and future climates. Atmos Ocean 39:361–428. doi: 10.1080/07055900.2001.9649686 CrossRefGoogle Scholar
  40. Yoshida S, Hirose N (2008) Non-isostatic sea-level variability simulated using a global barotropic ocean model. Pac Oceanogr 4:27–35Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.National Research Institute for Earth Science and Disaster PreventionTsukubaJapan
  2. 2.UTokyo Ocean AllianceThe University of TokyoTokyoJapan

Personalised recommendations