Skip to main content

Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models


The identification of flood-prone areas is a critical issue becoming everyday more pressing for our society. A preliminary delineation can be carried out by DEM-based procedures that rely on basin geomorphologic features. In the present paper, we investigated the dominant topographic controls for the flood exposure using techniques of pattern classification through linear binary classifiers based on DEM-derived morphologic features. Our findings may help the definition of new strategies for the delineation of flood-prone areas with DEM-based procedures. With this aim, local features—which are generally used to describe the hydrological characteristics of a basin—and composite morphological indices are taken into account in order to identify the most significant one. Analyses are carried out on two different datasets: one based on flood simulations obtained with a 1D hydraulic model, and the second one obtained with a 2D hydraulic model. The analyses highlight the potential of each morphological descriptor for the identification of the extent of flood-prone areas and, in particular, the ability of one geomorphologic index to represent flood-inundated areas at different scales of application.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  • Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Change Biol 19(5):1325–1346

    Article  Google Scholar 

  • Brivio PA, Colombo R, Maggi M, Tomasoni R (2002) Integration of remote sensing data and GIS for accurate mapping of flooded areas. Int J Remote Sens 23(3):429–441. doi:10.1080/01431160010014729

    Article  Google Scholar 

  • Cannon T (1994) Vulnerability analysis and the explanation of “natural” disasters. In: Varley A (ed) Disasters, development and the environment. John Wiley, Chichester

    Google Scholar 

  • Cantisani A (2012) Monitoraggio e modellazione per la protezione dal rischio idraulico in aree pianeggianti mediante lo sviluppo e l’applicazione di modelli bidimensionali e l’utilizzo di strumenti GIS Open Source (Università della Basilicata)

  • Cantisani A, Giosa L, Mancusi L, Sole A (2014) FLORA-2D: a new model to simulate the inundation in areas covered by flexible and rigid vegetation. Int J Eng Innov Technol 3(8):179–186

    Google Scholar 

  • Ceola S, Laio F, Montanari A (2014) Satellite nighttime lights reveal increasing human exposure to floods worldwide. Geophys Res Lett 41(20):7184–7190

    Article  Google Scholar 

  • Claps P, Fiorentino M (1999) Rapporto di sintesi sulla valutazione delle piene in Italia – Guida Operativa all’applicazione dei rapporti regionali sulla valutazione delle piene in Italia. Linea 1 Previsione e Prevenzione degli eventi idrologici estremi. CNR – GNDCI Roma

  • Cobby DM, Mason DC, Davenport IJ (2001) Image processing of air born scanning laser altimetry for improved river flood modelling. ISPRS J Photogramm Remote Sens 56(2):121–138

    Article  Google Scholar 

  • De Risi R, Jalayer F, De Paola F, Giugni M (2014) Probabilistic delineation of flood-prone areas based on a digital elevation model and the extent of historical flooding: the case of Ouagadougou. Bol Geol Min 125(3):329–340

    Google Scholar 

  • Degiorgis M, Gnecco G, Gorni S, Roth G, Sanguineti M, Taramasso AC (2012) Classifiers for the detection of flood-prone areas using remote sensed elevation data. J Hydrol 470–471:302–315

    Article  Google Scholar 

  • Domeneghetti A, Tarpanelli A, Brocca L, Barbetta S, Moramarco T, Castellarin A, Brath A (2014) The use of remote sensing-derived water surface data for hydraulic model calibration. Remote Sens Environ 149(2014):130–141

    Article  Google Scholar 

  • Douglas I, Alam K, Maghenda M, Mcdonnell Y, Mclean L, Campbell J (2008) Unjust waters: climate change, flooding and the urban poor in Africa. Environ Urban 20:187. doi:10.1177/0956247808089156

    Article  Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874

    Article  Google Scholar 

  • Fiorentino M, Margiotta MR (1999) La valutazione dei volumi di piena ed il calcolo semplificato dell’effetto di laminazione di grandi invasi, Atti del 19° corso di aggiornamento su “Tecniche per la difesa dall’inquinamento, G. Frega (a cura di), Editoriale Bios, Cosenza, 203–222

  • Fiorentino M, Manfreda S, Iacobellis V (2007) Peak runoff contributing area as hydrological signature of the probability distribution of floods. Adv Water Resour 30(10):2123–2134

    Article  Google Scholar 

  • Fluet-Chouinard E, Lehner B, Rebelo L-M, Papa F, Hamilton SK (2014) Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens Environ. doi:10.1016/j.rse.2014.10.015

    Google Scholar 

  • Frappart F, Seyler F, Martinez J-M, León JG, Cazenave A (2005) Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels. Remote Sens Environ 99(4):387–399. doi:10.1016/j.rse.2005.08.016

    Article  Google Scholar 

  • Freeman GE, Rahmeyer W, Copeland R R (2000) Determination of resistance due to shrubs and woody vegetation. Coastal and Hydraulics Laboratory, ERDC/CHL TR-00-25, U.S. Army Engineer

  • HEC-RAS 4.1 (2010).

  • Hjerdt KN, McDonnell JJ, Seibert J, Rodhe A (2004) A new topographic index to quantify downslope controls on local drainage. Water Resour Res 40:W05602

    Google Scholar 

  • Iacobellis V, Gioia A, Milella P, Satalino G, Balenzano A, Mattia F (2013) Inter-comparison of hydrological model simulations with time series of SAR-derived soil moisture maps. Eur J Remote Sens 46:739–757. doi:10.5721/EuJRS20134644

    Article  Google Scholar 

  • Jalayer F, De Risi R, De Paola F et al (2014) Probabilistic GIS-based method for delineation of urban flooding risk hotspots. Nat Hazards. doi:10.1007/s11069-014-1119-2

    Google Scholar 

  • Kirkby MJ (1975) Hydrograph modelling strategies. In: Peel R, Chisholm R, Haggett P (eds) Processes in physical and human geography. Heinemann, Oxford, pp 69–90

  • Manfreda S, Di Leo M, Sole A (2011) Detection of flood prone areas using digital elevation models. J Hydrol Eng 16(10):781–790

  • Manfreda S, Nardi F, Samela C, Grimaldi S, Taramasso AC, Roth G, Sole A (2014a) Investigation on the use of geomorphic approaches for the delineation of flood prone areas. J Hydrol 517:863–876

    Article  Google Scholar 

  • Manfreda S, Samela C, Sole A, Fiorentino M (2014b) Flood-prone areas assessment using linear binary classifiers based on morphological indices. Vulnerability, uncertain, and risk 2002–2011. doi:10.1061/9780784413609.201

  • Medina V, Hurlimannn M, Bateman A (2008) Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of Iberian Peninsula. Landslides 5(1):127–142

  • Milly PCD, Wetherald RT, Dunne KA, Delworth TL (2002) Increasing risk of great floods in a changing climate. Nature 415:514–517

    Article  Google Scholar 

  • Nardi F, Vivoni ER, Grimaldi S (2006) Investigating a floodplain scaling relation using a hydrogeomorphic delineation method. Water Resour Res 42:W09409

    Google Scholar 

  • Nel JL, Roux DJ, Abell R, Ashton PJ, Cowling RM, Higgins JV, Thieme M, Viers JH (2009) Progress and challenges in freshwater conservation planning. Aquat Conserv Mar Fresh Water Ecosyst 19(4):474–485

    Article  Google Scholar 

  • O’Brien J (2007) FLO-2D user manual. Version 2007.06

  • Papaioannou G, Vasiliades L, Loukas A (2014) Multi-criteria analysis framework for potential flood prone areas mapping. J Water Resour Manag. doi:10.1007/s11269-014-0817-6

    Google Scholar 

  • Petryk S, Bosmajian GB (1975) Analysis of flow through vegetation. J Hydraul Div ASCE 101(7):871–884

    Google Scholar 

  • Prudhomme C, Reynard N, Crooks S (2002) Downscaling of global climate models for flood frequency analysis: where are we now? Hydrol Process 16:1137–1150

    Article  Google Scholar 

  • Sharitz RR, Mitsch WJ (1993) Southern hardwood forests. In: Martin WH, Boyce SG, Echtemacht AC (eds) Biodiversity of the southeastern United States: lowland terrestrial communities. Wiley, New York, pp 311–372

    Google Scholar 

  • Sole A, Giosa L, Cantisani A, Statuto D, Nolè L (2011) Analisi di sensibilità nella modellazione delle inondazioni di aree pianeggianti - Sensitivity analysis in flood modeling of flat areas. Ital J Eng Geol Environ 157–167. doi:10.4408/IERGE.2011-01.S-12

  • Townsend PA, Walsh SJ (1998) Modeling floodplain inundation using an integrated GIS with radar and optical remote sensing. Geomorphology 21(3–4):295–312. doi:10.1016/S0169-555X(97)00069-X

    Article  Google Scholar 

Download references


We would like to acknowledge the valuable contribution of the two anonymous reviewers. This research was carried out within the framework of activities of the CINID under the research agreement with the Civil Protection of the Basilicata Region.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Salvatore Manfreda.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manfreda, S., Samela, C., Gioia, A. et al. Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models. Nat Hazards 79, 735–754 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Flood hazard
  • DEM
  • Terrain analysis
  • Geomorphic approaches
  • Ungauged basins