Change detection in floodable areas of the Danube delta using radar images

Abstract

In the wetlands of the Danube delta floodplain, flooding is a major natural risk. The coastal wetlands have been seriously impacted by floods in 2002, 2005, 2006 and 2010. Using hydrological and satellite observations acquired in 2009 and during the summer of 2010, this paper tackles the issue of forecasting risk based on land cover information and observations. A major objective of this methodological work consists in exploring several types of data from the Japanese ALOS satellite. These data are used to illustrate a multi-temporal radar data processing methodology based on temporal entropy analysis that enables change detection in the floodable areas of the Danube delta.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    Typha angustifolia, Schoenoplectus lacustris, Sparganium sp. and Thelypteris palustris.

  2. 2.

    Phragmitetum communis, Scipo-Phragmitetum, Bolboschoeno-Phragmitetum and Astero tripolii-Phragmitetum.

  3. 3.

    The Radial Basis Function (RBF) kernel.

References

  1. Bonn F, Dixon R (2005) Monitoring flood extent and forecasting excess runoff risk with RADARSAT-1 data. Nat Hazards 35:377–393

    Article  Google Scholar 

  2. Brivio PA, Colombo R, Maggi M, Tomasoni R (2002) Integration of remote sensing data and GIS for accurate mapping of flooded areas. Int J Remote Sens 23(3):429–441

    Article  Google Scholar 

  3. Burges C-J (1998) A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery. Kluwer Academic, Dordrecht, pp 1–43

    Google Scholar 

  4. Cloude S (2007) The dual polarization entropy/alpha decomposition: a PALSAR case study. In: Proceedings: January 2007, Frascati, Italy

  5. Cloude SR, Pottier E (1997) A review of target decomposition theorems in radar polarimetry. IEEE Trans Geosci Remote Sens 34(1):68–78

    Article  Google Scholar 

  6. Freeman A, Durden SL (1998) A three-component scattering model for polarimetric SAR data. IEEE Trans Geosci Remote Sens 36(3):963–973

    Article  Google Scholar 

  7. Fuchs M, Hoffmann R, Schwonke F (2008) Change detection with GRASS GIS—comparison of images taken by different sensor. http://geoinformatics.fsv.cvut.cz/gwiki/Change_Detection_with_GRASS_GIS__Comparison_of_images_taken_by_different_sensors

  8. Gan TY, Zunic F, Kuo C-C, Strobl T (2012) Flood mapping of Danube River at Romania using single and multi-date ERS2-SAR images. Int J Appl Earth Obs Geoinform 18:69–81

    Article  Google Scholar 

  9. Gastescu P, Stiuca R (2008) Delta Dunarii. Rezervatie a biosferei. Edition CD PRESS, 2008, 400p

  10. GIEC (2014) Fifth Assessment report—mitigation of climate change. IPCC

  11. Hanganu J, Dubyna D, Zhmud E, Grigoras I, Menke U, Drost H, Sefan N, Sarbu I (2002) Vegetation of the biosphere reserve “Danube Delta—with transboundary vegetation map on a 1:150,000 scale. Danube Delta National Institute, Romania; M.G. Kholodny—Institute of Botany & Danube Delta Biosphere Reserve, Ukraine and RIZA. RIZA report 2002.049 2002, 89p

  12. Horritt MS, Mason DC, Luckman AJ (2001) Flood boundary delineation from synthetic aperture radar imagery using a statistical active contour model. Int J Remote Sens 22(13):2489–2507

    Article  Google Scholar 

  13. Huang S, Cai X, Chen C, Liu D (2011) Change detection method based on fractal model and wavelet transform for multitemporal SAR images. Int J Appl Earth Obs Geoinform 13:863–872

    Article  Google Scholar 

  14. Inglada J, Mercier G (2007) A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis. IEEE Trans Geosci Remote Sens 45(5):1432–1446

    Article  Google Scholar 

  15. Jensen JR (2004) Introductory digital image processing—a remote sensing perspective, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  16. Kussul N, Shelestov A, Skakun S (2008) Grid system for flood extent extraction from satellite images. Earth Sci Inform 1:105–117

    Article  Google Scholar 

  17. Laugier O, Fellah K, Tholey N, Meyer C, De Fraipont P (1997) High temporal detection and monitoring of flood zone dynamic using ERS data around catastrophic natural events: the 1993 and 1994 camargue flood events, paper presented at 3rd ERS symposium on space at the service of our environment, European Space Agency, Florence

  18. Lee JS, Pottier E (2009) Polarimetric radar imaging: from basics to applications. CRC Press, New York, p 391

  19. Lee JS, Grunes MR, de Grandi G (1999) Polarimetric SAR speckle filtering and its implication for classification. IEEE Trans Geosci Remote Sens 37(5):2362–2373

    Google Scholar 

  20. Lu D, Mausel P, Brondizio E, Moran E (2004) Change detection technique. Int J Remote Sens 25(12):2365–2407

    Article  Google Scholar 

  21. Lunetta RS, Elvidge CD (1998) Remote sensing change detection, environmental monitoring methods and applications. Ann Arbor Press, Ann Arbor

    Google Scholar 

  22. Martinis S, Twele A, Voigt S (2009) Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data. Nat Hazards Earth Syst Sci 9:303–314

    Article  Google Scholar 

  23. Mas JF (2000) Une revue des méthodes et des techniques de télédétection du changement. Journal canadien de télédétection 26(4):349–362

    Google Scholar 

  24. Matgen P, Schumann G, Henry JB, Hoffmann L, Pfister L (2007) Integration of SAR-derived inundation areas, high precision topographic data and a river flow model toward real-time flood management. J Appl Earth Obs Geoinf 9:247–263

    Article  Google Scholar 

  25. Matgen P, Hostache R, Schumann G, Pfister L, Hoffman L, Savenije H (2011) Towards an automated SAR-based flood monitoring system: lessons learned from two case studies. Phys Chem Earth 36:241–252

    Article  Google Scholar 

  26. Niculescu S, Lardeux C, Frison JL, Rudant JP (2009) Approche Sociale et Radar de la Gestion du Risque d’Inondation dans le delta du Danube, Houille Blanche, Revue Internationale de l’eau, SHF, Paris, p 2

  27. Niculescu S, Lardeux C, Güttler Nor F, Rudant JP (2010) Multisensor systems and flood risk management. In: Application to the Danube Delta using radar and hyperspectral imagery, Remote Sensing, vol 9, pp 3–4

  28. Oberstadler R, Hönsch H, Huth D (1997) Assessment of the mapping capabilities of ERS-1 SAR data for flood mapping: a case study in Germany. Hydrol Process 10:1415–1425

    Article  Google Scholar 

  29. Papathanassiou KP, Cloude SR (2001) Single-baseline polarimetric SAR interferometry. IEEE Trans Geosci Remote Sens 39(11):2352–2363

    Article  Google Scholar 

  30. Quin G, Pinel-Puysségur B, Nicolas J-M (2012) Comparison of harmonic, geometric and arithmetic means for change detection in SAR time series. In: EUSAR. 9th European conference on synthetic aperture radar

  31. Schumann GJ-P, Di Baldassarre G, Bates PD (2009) The utility of space-borne radar to render flood inundation maps based on multi-algorithm ensembles. IEEE Trans Geosci Remote Sens 47(8):2801–2807

    Article  Google Scholar 

  32. Singh A (1989) Digital change detection techniques using remotely-sensed data: review article. Int J Remote Sen 10(6):989–1003

    Article  Google Scholar 

  33. Van Zyl JJ (1989) Unsupervised classification of scattering behavior using polarimetric data. IEEE Trans Geosci Remote Sens 27(1):36–45

    Article  Google Scholar 

  34. Yajima Y, Yamaguchi Y, Sato R, Yamada H, Boerner W-M (2008) PALSAR image analysis of wetlands using a modified four-component scattering power decomposition. IEEE Trans Geosci Remote Sens 46(6):1667–1673

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Simona Niculescu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niculescu, S., Lardeux, C., Hanganu, J. et al. Change detection in floodable areas of the Danube delta using radar images. Nat Hazards 78, 1899–1916 (2015). https://doi.org/10.1007/s11069-015-1809-4

Download citation

Keywords

  • Danube delta
  • Flood risk
  • Change detection
  • Temporal entropy
  • ALOS satellite
  • Forecasting
  • Floodable areas