Natural Hazards

, Volume 78, Issue 3, pp 1899–1916 | Cite as

Change detection in floodable areas of the Danube delta using radar images

  • Simona Niculescu
  • Cédric Lardeux
  • Jenica Hanganu
  • Grégoire Mercier
  • Laurence David
Original Paper


In the wetlands of the Danube delta floodplain, flooding is a major natural risk. The coastal wetlands have been seriously impacted by floods in 2002, 2005, 2006 and 2010. Using hydrological and satellite observations acquired in 2009 and during the summer of 2010, this paper tackles the issue of forecasting risk based on land cover information and observations. A major objective of this methodological work consists in exploring several types of data from the Japanese ALOS satellite. These data are used to illustrate a multi-temporal radar data processing methodology based on temporal entropy analysis that enables change detection in the floodable areas of the Danube delta.


Danube delta Flood risk Change detection Temporal entropy ALOS satellite Forecasting Floodable areas 


  1. Bonn F, Dixon R (2005) Monitoring flood extent and forecasting excess runoff risk with RADARSAT-1 data. Nat Hazards 35:377–393CrossRefGoogle Scholar
  2. Brivio PA, Colombo R, Maggi M, Tomasoni R (2002) Integration of remote sensing data and GIS for accurate mapping of flooded areas. Int J Remote Sens 23(3):429–441CrossRefGoogle Scholar
  3. Burges C-J (1998) A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery. Kluwer Academic, Dordrecht, pp 1–43Google Scholar
  4. Cloude S (2007) The dual polarization entropy/alpha decomposition: a PALSAR case study. In: Proceedings: January 2007, Frascati, ItalyGoogle Scholar
  5. Cloude SR, Pottier E (1997) A review of target decomposition theorems in radar polarimetry. IEEE Trans Geosci Remote Sens 34(1):68–78CrossRefGoogle Scholar
  6. Freeman A, Durden SL (1998) A three-component scattering model for polarimetric SAR data. IEEE Trans Geosci Remote Sens 36(3):963–973CrossRefGoogle Scholar
  7. Fuchs M, Hoffmann R, Schwonke F (2008) Change detection with GRASS GIS—comparison of images taken by different sensor.
  8. Gan TY, Zunic F, Kuo C-C, Strobl T (2012) Flood mapping of Danube River at Romania using single and multi-date ERS2-SAR images. Int J Appl Earth Obs Geoinform 18:69–81CrossRefGoogle Scholar
  9. Gastescu P, Stiuca R (2008) Delta Dunarii. Rezervatie a biosferei. Edition CD PRESS, 2008, 400pGoogle Scholar
  10. GIEC (2014) Fifth Assessment report—mitigation of climate change. IPCCGoogle Scholar
  11. Hanganu J, Dubyna D, Zhmud E, Grigoras I, Menke U, Drost H, Sefan N, Sarbu I (2002) Vegetation of the biosphere reserve “Danube Delta—with transboundary vegetation map on a 1:150,000 scale. Danube Delta National Institute, Romania; M.G. Kholodny—Institute of Botany & Danube Delta Biosphere Reserve, Ukraine and RIZA. RIZA report 2002.049 2002, 89pGoogle Scholar
  12. Horritt MS, Mason DC, Luckman AJ (2001) Flood boundary delineation from synthetic aperture radar imagery using a statistical active contour model. Int J Remote Sens 22(13):2489–2507CrossRefGoogle Scholar
  13. Huang S, Cai X, Chen C, Liu D (2011) Change detection method based on fractal model and wavelet transform for multitemporal SAR images. Int J Appl Earth Obs Geoinform 13:863–872CrossRefGoogle Scholar
  14. Inglada J, Mercier G (2007) A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis. IEEE Trans Geosci Remote Sens 45(5):1432–1446CrossRefGoogle Scholar
  15. Jensen JR (2004) Introductory digital image processing—a remote sensing perspective, 3rd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  16. Kussul N, Shelestov A, Skakun S (2008) Grid system for flood extent extraction from satellite images. Earth Sci Inform 1:105–117CrossRefGoogle Scholar
  17. Laugier O, Fellah K, Tholey N, Meyer C, De Fraipont P (1997) High temporal detection and monitoring of flood zone dynamic using ERS data around catastrophic natural events: the 1993 and 1994 camargue flood events, paper presented at 3rd ERS symposium on space at the service of our environment, European Space Agency, FlorenceGoogle Scholar
  18. Lee JS, Pottier E (2009) Polarimetric radar imaging: from basics to applications. CRC Press, New York, p 391Google Scholar
  19. Lee JS, Grunes MR, de Grandi G (1999) Polarimetric SAR speckle filtering and its implication for classification. IEEE Trans Geosci Remote Sens 37(5):2362–2373Google Scholar
  20. Lu D, Mausel P, Brondizio E, Moran E (2004) Change detection technique. Int J Remote Sens 25(12):2365–2407CrossRefGoogle Scholar
  21. Lunetta RS, Elvidge CD (1998) Remote sensing change detection, environmental monitoring methods and applications. Ann Arbor Press, Ann ArborGoogle Scholar
  22. Martinis S, Twele A, Voigt S (2009) Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data. Nat Hazards Earth Syst Sci 9:303–314CrossRefGoogle Scholar
  23. Mas JF (2000) Une revue des méthodes et des techniques de télédétection du changement. Journal canadien de télédétection 26(4):349–362Google Scholar
  24. Matgen P, Schumann G, Henry JB, Hoffmann L, Pfister L (2007) Integration of SAR-derived inundation areas, high precision topographic data and a river flow model toward real-time flood management. J Appl Earth Obs Geoinf 9:247–263CrossRefGoogle Scholar
  25. Matgen P, Hostache R, Schumann G, Pfister L, Hoffman L, Savenije H (2011) Towards an automated SAR-based flood monitoring system: lessons learned from two case studies. Phys Chem Earth 36:241–252CrossRefGoogle Scholar
  26. Niculescu S, Lardeux C, Frison JL, Rudant JP (2009) Approche Sociale et Radar de la Gestion du Risque d’Inondation dans le delta du Danube, Houille Blanche, Revue Internationale de l’eau, SHF, Paris, p 2Google Scholar
  27. Niculescu S, Lardeux C, Güttler Nor F, Rudant JP (2010) Multisensor systems and flood risk management. In: Application to the Danube Delta using radar and hyperspectral imagery, Remote Sensing, vol 9, pp 3–4Google Scholar
  28. Oberstadler R, Hönsch H, Huth D (1997) Assessment of the mapping capabilities of ERS-1 SAR data for flood mapping: a case study in Germany. Hydrol Process 10:1415–1425CrossRefGoogle Scholar
  29. Papathanassiou KP, Cloude SR (2001) Single-baseline polarimetric SAR interferometry. IEEE Trans Geosci Remote Sens 39(11):2352–2363CrossRefGoogle Scholar
  30. Quin G, Pinel-Puysségur B, Nicolas J-M (2012) Comparison of harmonic, geometric and arithmetic means for change detection in SAR time series. In: EUSAR. 9th European conference on synthetic aperture radarGoogle Scholar
  31. Schumann GJ-P, Di Baldassarre G, Bates PD (2009) The utility of space-borne radar to render flood inundation maps based on multi-algorithm ensembles. IEEE Trans Geosci Remote Sens 47(8):2801–2807CrossRefGoogle Scholar
  32. Singh A (1989) Digital change detection techniques using remotely-sensed data: review article. Int J Remote Sen 10(6):989–1003CrossRefGoogle Scholar
  33. Van Zyl JJ (1989) Unsupervised classification of scattering behavior using polarimetric data. IEEE Trans Geosci Remote Sens 27(1):36–45CrossRefGoogle Scholar
  34. Yajima Y, Yamaguchi Y, Sato R, Yamada H, Boerner W-M (2008) PALSAR image analysis of wetlands using a modified four-component scattering power decomposition. IEEE Trans Geosci Remote Sens 46(6):1667–1673CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Simona Niculescu
    • 1
  • Cédric Lardeux
    • 2
  • Jenica Hanganu
    • 3
  • Grégoire Mercier
    • 4
  • Laurence David
    • 1
  1. 1.Laboratoire LETG-Brest, Géomer - UMR 6554 CNRS - Rue Dumont d’UrvilleTechnopôle Brest - IroisePlouzanéFrance
  2. 2.Office National des ForêtsParis Cedex 12France
  3. 3.Danube Delta for Research and DevelopmentTulceaRomania
  4. 4.Institut Télécom, Télécom Bretagne, Lab-STICC/CID - UMR 6285 CNRSTechnopôle Brest - IroiseBrest CedexFrance

Personalised recommendations