Natural Hazards

, Volume 77, Issue 2, pp 693–716 | Cite as

Lahar simulation at active volcanoes of the Southern Andes: implications for hazard assessment

  • Angelo CastruccioEmail author
  • Jorge Clavero
Original Paper


Lahars are catastrophic events that have the potential to cause the loss of life and damage to infrastructure over inhabited areas. Consequently the zoning of associated hazards is a critical task. We evaluated the lahar hazards at two volcanoes of the Southern Volcanic Zone of the Andes of Chile: Villarrica and Calbuco. We applied the LAHARZ and MSF codes using three DEMs: SRTM, ASTER GDEM and a topographic map-derived DEM to evaluate whether low-resolution and widely available DEMs are suitable for modelling lahars. Our results indicate that the original 0.05 calibration constant used in the original global LAHARZ model to calculate the cross-sectional area of inundation is not adequate for lahars from these volcanoes, and our analyses suggest a value of 0.02 as a more appropriate value. One of the most important results obtained is the high relevance that simulating topographic changes for multi-pulses lahar events has. The simulations indicate that dramatic changes in trajectories could occur during such scenarios, and areas not recognized as susceptible of being affected by lahars using the original topography can also be affected. These results have important implications for hazard assessment, as for example, the town of Pucón, located 16 km to the N of the Villarrica volcano was not recognized to be located in inundation areas when using LAHARZ on the original topography represented by unmodified DEMs. However, more than 50 % of the town could be inundated if lahars are modelled as multiple pulses, in agreement with geological and historical observations, as well as results shown on previous hazard maps. The MSF code better simulates the lateral extension of possible lahars, especially over flat areas or where topography is complex with many stream trajectories, but lacking a reliable method to determine the run-out distance. Our results indicate that the modifications made to the LAHARZ governing equations give very good results for assessing the hazards associated with lahars in volcanoes of this region of the Andes.


Lahars Hazard assessment Computer modelling Southern Andes 



A.C. was supported by a CONICYT postgraduate scholarship. This work has been partially funded through FONDECYT project 1040515 (PI: Andres Rivera, co-I Jorge Clavero). We thank Gabriela Anabalon who prepared some of the figures. We thank the help of Steve Schilling and Christian Huggel for kindly providing the codes LAHARZ and MSF and answering our questions. This paper has improved from critical and constructive reviews done by two anonymous reviewers.

Supplementary material

11069_2015_1617_MOESM1_ESM.docx (31 kb)
Supplementary material 1 (DOCX 31 kb)


  1. Brock B, Rivera A, Casassa G, Bown F, Acuña C (2007) The surface energy balance of an active ice-covered volcano: Volcán Villarrica, southern Chile. Ann Glaciol 45:104–114CrossRefGoogle Scholar
  2. Castruccio A, Clavero J, Rivera A (2010) Comparative study of lahars generated by the 1961 and 1971 eruptions of Calbuco and Villarrica volcanoes, Southern Andes of Chile. J Volcanol Geotherm Res 190:297–311CrossRefGoogle Scholar
  3. Clavero J, Moreno H (2004) Evolution of Villarrica Volcano. In: Lara L, Clavero J (eds) Villarrica Volcano (39.5°S) Southern Andes, Chile. Servic Nac Geol Miner Bol 61:17–27Google Scholar
  4. Clavero J, Godoy E, Arancibia G, Rojas C (2008) Moreno H (2008) Multiple Holocene sector collapses at Calbuco volcano, Southern Andes. IAVCEI General Assembly, Reykjavik, pp 17–22Google Scholar
  5. Felpeto A, Marti J, Ortiz R (2007) Automatic GIS-based system for volcanic hazard assessment. J Volcanol Geotherm Res 166:106–116CrossRefGoogle Scholar
  6. González O (1995) Volcanes de Chile. Instituto Geográfico Militar, SantiagoGoogle Scholar
  7. Hubbard B, Sheridan M, Carrasco G, Díaz R, Rodríguez S (2007) Comparative lahar hazard mapping at volcan Citlaltepetl, Mexico using SRTM, ASTER and DTED-1 digital topographic data. J Volcanol Geotherm Res 160:99–124CrossRefGoogle Scholar
  8. Huggel C, Kääb A, Haeberli W, Krummenacher B (2003) Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps. Nat Hazard Earth Syst 3(6):647–662CrossRefGoogle Scholar
  9. Huggel C, Schneider D, Julio P, Delgado H, Kääb A (2007) Evaluation of ASTER and SRTM DEM data for lahar modeling: a case study on lahars from Popocatepetl volcano, Mexico. J Volcanol Geotherm Res 170(1–2):99–110Google Scholar
  10. Iverson R (1997) The physics of debris flows. Rev Geophys 35(3):245–296CrossRefGoogle Scholar
  11. Iverson R, Schilling S, Vallance J (1998) Objective delineation of lahar-hazard zones downstream from volcanoes. Geol Soc Am Bull 110:972–984CrossRefGoogle Scholar
  12. Klohn E (1963) The February 1961 Eruption of Calbuco Volcano. Bull Seismol Soc Am 53(6):1435–1436Google Scholar
  13. Lopez-Escobar L, Parada M, Moreno H, Frey F, Hickey-Vargas R (1992) A contribution to the petrogenesis of Osomo and Calbuco volcanoes, Southern Andes (41°00′–41°30′S): comparative study. Andean Geol 19(2):211–226Google Scholar
  14. Macedonio G, Costa A, Folch A (2008) Ash fallout at Vesuvius: numerical simulations and implications for hazard assessment. J Volcanol Geotherm Res 178:366–377CrossRefGoogle Scholar
  15. Magirl CS, Griffiths PG, Webb RH (2010) Analyzing debris flows with the statistically calibrated empirical model LAHARZ in southeastern Arizona, USA. Geomorphology 119:111–124CrossRefGoogle Scholar
  16. Major J (1997) Depositional processes in large-scale debris-flow experiments. J Geol 105:345–366CrossRefGoogle Scholar
  17. Major J, Newhall C (1989) Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods. Bull Volcanol 52:1–27CrossRefGoogle Scholar
  18. Malin M, Sheridan M (1982) Computer-assisted mapping of pyroclastic surges. Science 217:637–640CrossRefGoogle Scholar
  19. Moreno H (1993) Volcán Villarrica, Geología y evaluación del riesgo volcánico, Regiones IX y X, 39°25′S. Proyecto FONDECYT 1247 1991–1992. SantiagoGoogle Scholar
  20. Moreno H (1999) Mapa de peligros del volcán Calbuco. Región de los Lagos. Servicio Nacional de Geología y minería, Documentos de trabajo, No 12, 1 mapa escala 1:75,000. SantiagoGoogle Scholar
  21. Moreno H (2000) Mapa de peligros del volcán Villarrica, Regiones de la Araucanía y de Los Lagos. Servicio Nacional de geología y Minería, Documento de trabajo, No 17, 1 mapa escala 1:75000. SantiagoGoogle Scholar
  22. Moreno H, Clavero J (2006) Geología del área del volcán Villarrica, Regiones de la Araucanía y de los Lagos. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica, 98,1 mapa escala 1:50,000, SantiagoGoogle Scholar
  23. Moreno H, Naranjo J (2004) Calbuco volcano historic block-and-ash and pyroclastic flows: increasing threatening on surrounding communities, Southern Andes 41.5°S. IAVCEI General Assembly, Pucon, Chile, 14–19 Nov 2004Google Scholar
  24. Moreno H, Naranjo J, Clavero J (2006) Generación de lahares calientes en el volcán Calbuco, Andes del Sur de Chile (41.3°S). XI Congreso Geológico Chileno, Antofagasta. Abstracts (CD)Google Scholar
  25. Muñoz-Salinas E, Castillo-Rodriguez M, Manea V, Manea M, Palacios D (2009) Lahar flow simulations using LAHARZ program: application for the Popocatepetl volcano, Mexico. J Volcanol Geotherm Res 182:13–22CrossRefGoogle Scholar
  26. Naranjo J, Moreno H (2004) Laharic debris-flows from Villarrica Volcano. In: Lara L, Clavero J (eds) Villarrica Volcano (39.5°S) Southern Andes, Chile. Servic Nac Geol Miner Bol 61:28–38Google Scholar
  27. Oramas Dorta D, Toyos G, Oppenheimer C, Pareschi MT, Sulpizio R, Zanchetta G (2007) Empirical modelling of the May 1998 small debris flows in Sarno (Italy) using LAHARZ. Nat Hazards 40:381–396CrossRefGoogle Scholar
  28. Patra AK, Nichita CC, Bauer AC, Pitman EB, Bursik M, Sheridan MF (2006) Parallel adaptative discontinuous Garlerkin approximation for thin layer avalanche modeling. Comput Geosci 32:912–926Google Scholar
  29. Petit-Breuilh M (1999) Cronología Eruptiva Histórica de los volcanes Osorno y Calbuco, Andes del Sur (41°–41°30S). Servi Nac Geol Miner Bol 53:1–46Google Scholar
  30. Pierson T, Janda R, Thouret J, Borrero C (1990) Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars. J Volcanol Geotherm Res 41:17–66CrossRefGoogle Scholar
  31. Pierson T, Major J, Amigo A, Moreno H (2013) Acute sedimentation response to rainfall following the explosive phase of the 2008–09 eruption of Chaitén Volcano. Bull Volcanol, Chile. doi: 10.1007/s00445-013-0723-4 Google Scholar
  32. Quinteros C (1991) Estudio de los lahares del volcán Llaima-IX° Región de la Araucanía. Dissertation, Universidad de ChileGoogle Scholar
  33. Renschler C (2005) Scales and uncertainties in volcano hazard prediction: optimizing the use of GIS land models. J Volcanol Geotherm Res 139(1–2):73–87CrossRefGoogle Scholar
  34. Rivera A, Corripio J, Brock B, Clavero J, Wendt J (2008) Monitoring ice capped active Volcán Villarrica in Southern Chile by means of terrestrial photography combined with automatic weather stations and GPS. J Glaciol 54(188):920–930CrossRefGoogle Scholar
  35. Rivera A, Zamora R, Uribe J, Wendt A, Oberreuter J, Cisternas S, Gimeno F, Clavero J (2014) Recent changes in total volume on ice on Volcan Villarrica, Southern Chile. Nat Hazards. doi: 10.1007/s11069-014-1306-1 Google Scholar
  36. Schilling S (1998) LAHARZ: GIS programs for automated mapping of lahar-inundations hazard zones. US Geological Survey Open-File Report 98-638Google Scholar
  37. Schilling S (2014) Laharz_py: GIS tools for automated mapping of lahar inundation hazard zones. US Geological Survey Open-File Report 2014-1073Google Scholar
  38. Sellés D, Moreno H (2011) Geología del volcán Calbuco, Región de los Lagos. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica, 20, 1 mapa escala 1:50,000, SantiagoGoogle Scholar
  39. Stern C, Moreno H, Lopez-Escobar L, Clavero J, Lara L, Naranjo J, Parada M, Skewes M (2007) Chilean Volcanoes. In: Moreno T, Gibbons W (eds) The geology of Chile. Geological Society of London, London, pp 149–180Google Scholar
  40. Stevens N, Manville V, Heron D (2002) The sensitivity of a volcanic flow model to digital elevation model accuracy: experiments with digitised map contours and interferometric SAR at Ruapehu and Taranaki volcanoes, New Zealand. J Volcanol Geotherm Res 160(1–2):99–124Google Scholar
  41. Vallance J (2000) Lahars. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Diego, pp 601–616Google Scholar
  42. Vicari A, Ciraudo A, Del Negro C, Herault A, Fortuna L (2009) Lava flow simulations using discharge rates from thermal infrared satellite imagery during the 2006 Etna eruption. Nat Hazards 50:539–550CrossRefGoogle Scholar
  43. Widiwijayanti C, Voight B, Hidayat D, Schilling SP (2009) Objective rapid delineation of areas at risk from block-and-ash pyroclastic flows and surges. Bull Volcanol 71:687–703CrossRefGoogle Scholar
  44. Worni R, Huggel C, Stoffel M, Pulgarin B (2012) Challenges of modeling current very large lahars at Nevado del Huila, Colombia. Bull Volcanol 74:309–324CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Departamento de GeologíaUniversidad de ChileSantiagoChile
  2. 2.Centro de Excelencia en Geotermia de los Andes (CEGA), FONDAP 15090013SantiagoChile
  3. 3.Escuela de GeologíaUniversidad MayorSantiagoChile

Personalised recommendations