Natural Hazards

, Volume 76, Issue 2, pp 1039–1061 | Cite as

A method to reveal climatic variables triggering slope failures at high elevation

  • Roberta ParanunzioEmail author
  • Francesco Laio
  • Guido Nigrelli
  • Marta Chiarle
Original Paper


The air temperature in the Alps has increased at a rate more than twice the global average in the last century, and a significant increase in the number of slope failures has also been documented, in particular in glacial and periglacial areas. Thus, the relationship between climatological forcing and processes of instability at high elevation is worth analyzing. We provide a simple, statistically based method aimed at identifying a relationship between climate factors and the triggering of geohazards. Our main idea is to compare the meteorological conditions at the time when the instability occurred with the typical conditions in the same place. Carrying out a straightforward analysis based on the use of the empirical distribution function, we are able to determine whether any of the meteorological variables had nonstandard values in the lead-up to the slope failure event, and thus to identify the variables that are likely to have acted as triggering factors for the slope failure. The method has been tested on five events in the glacial and periglacial areas of the Piedmont Alps (Northwestern Italy) occurring between 1989 and 2008. Out of these five case studies, our research shows that four can be attributed to climatic anomalies (rise of temperature and/or heavy precipitation). The results of this study may contribute to developing knowledge about the relationships between climatic variables and slope failures at high elevations, providing interesting insights into the expected impact of ongoing global warming on geohazards.


Alps Precipitation Triggering High elevation Geohazards Climate change Temperature 


  1. Allen S, Huggel C (2013) Extremely warm temperatures as a potential cause of recent high mountain rockfall. Glob Planet Change 107:59–69. doi: 10.1016/j.gloplacha.2013.04.007 CrossRefGoogle Scholar
  2. ARPA Piemonte Banca dati meteorologica (1990) Accessed 14 August 2013
  3. Auer I, Bohm R, Jurkovic A et al (2007) HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46. doi: 10.1002/joc.1377 CrossRefGoogle Scholar
  4. Beniston M (2006) Mountain weather and climate: a general overview and a focus on climatic change in the Alps. Hydrobiologia 562:3–16. doi: 10.1007/s10750-005-1802-0 CrossRefGoogle Scholar
  5. Bovo S, Carenzo G, Cattaneo M, Debrando V, Faletto C, Gandino E (1990) La valanga di ghiaccio del Monviso—Il contributo delle reti di monitoraggio della Regione Piemonte nell’interpretazione dell’evento. Neve e Valanghe 11:6–13Google Scholar
  6. Brunetti M, Lentini G, Maugeri M, Nanni T, Auer I, Boehm R, Schoener W (2009) Climate variability and change in the Greater Alpine Region over the last two centuries based on multi-variable analysis. Int J Climatol 29:2197–2225. doi: 10.1002/joc.1857 CrossRefGoogle Scholar
  7. Chiarle M, Mortara G (2008) Geomorphological impact of climate change on alpine glacial and periglacial areas. Examples of processes and description of research needs. In: Interpraevent 2008 conference proceedings, Dornbirn, vol 2, pp 111–122Google Scholar
  8. Chiarle M, Iannotti S, Mortara G, Deline P (2007) Recent debris flow occurrences associated with glaciers in the Alps. Glob Planet Change 56:123–136CrossRefGoogle Scholar
  9. Chiarle M, Geertsema M, Mortara G, Clague JJ (2011) Impacts of climate change on debris flow occurrence in the cordillera of Western Canada and the European Alps. In: Genevois R, Hamilton DL, Prestininzi A (eds) Proceedings of the 5th international conference on debris-flow hazards mitigation, mechanics. Università La Sapienza, Roma, pp 45–52Google Scholar
  10. Chiarle M, Coviello V, Arattano M, Silvestri P, Nigrelli G (2015) High elevation rock falls and their climatic control: a case study in the Conca di Cervinia (NW Italian Alps). In: Lollino G, Manconi A, Clague J, Shan W, Chiarle M (eds) Engineering geology for society and territory, vol 1. Springer, Berlin, pp 439–442CrossRefGoogle Scholar
  11. Ciccarelli N, Von Hardenberg J, Provenzale A, Ronchi C, Vargiu A, Pelosini R (2008) Climate variability in north-western Italy during the second half of the 20th century. Glob Planet Change 63:185–195CrossRefGoogle Scholar
  12. Comitato Geografico Nazionale Italiano (1926) Nomi e limiti delle grandi parti del Sistema alpino. In: L’Universo—Anno VII N.9. Istituto Geografico Militare, FirenzeGoogle Scholar
  13. Coviello V, Chiarle M, Arattano M, Pogliotti P, Morra di Cella U (2015) Monitoring rock wall temperatures and microseismic activity for slope stability investigation at J.A. Carrel hut, Matterhorn. In: Lollino G, Manconi A, Clague J, Shan W, Chiarle M (eds) Engineering geology for society and territory, vol 1. Springer, Berlin, pp 305–309CrossRefGoogle Scholar
  14. Dutto F, Mortara G (1992) Rischi connessi con la dinamica glaciale nelle Alpi Italiane. Geografia Fisica Dinamica Quaternaria 15:85–92Google Scholar
  15. Dutto F, Godone F, Mortara G (1991) L’écroulement du glacier supérieur de Coolidge. (Paroi nord du Mont Viso, Alpes occidentales). Rev géographie Alp 79:7–18CrossRefGoogle Scholar
  16. Fischer L, Kääb A, Huggel C, Noetzli J (2006) Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face. Nat Hazards Earth Syst Sci 6:761–772CrossRefGoogle Scholar
  17. Fischer L, Amann F, Moore JR, Huggel C (2010) Assessment of periglacial slope stability for the 1988 Tschierva rock avalanche (Piz Morteratsch, Switzerland). Eng Geol 116:32–43. doi: 10.1016/j.enggeo.2010.07.005 CrossRefGoogle Scholar
  18. Fischer L, Eisenbeiss H, Kaab A, Huggel C, Haeberli W (2011) Monitoring topographic changes in a periglacial high-mountain face using high-resolution DTMs, Monte Rosa East Face, Italian Alps. Permafr Periglac Process 22:140–152. doi: 10.1002/ppp.717 CrossRefGoogle Scholar
  19. Fischer L, Huggel C, Kääb A, Haeberli W (2013) Slope failures and erosion rates on a glacierized high-mountain face under climatic changes. Earth Surf Process Landforms 38:836–846. doi: 10.1002/esp.3355 CrossRefGoogle Scholar
  20. Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res. doi: 10.1029/2006JF000547
  21. Gruber S, Hoelzle M, Haeberli W (2004) Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophys Res Lett 31:4. doi: 10.1029/2004gl020051 CrossRefGoogle Scholar
  22. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5:3–17. doi: 10.1007/s10346-007-0112-1 CrossRefGoogle Scholar
  23. Haeberli W, Gärtner-Roer I, Hoelzle M, Paul F, Zemp M (2009) Glacier Mass Balance Bulletin No. 10 (2006–2007). World Glacier Monit. Serv., ZurichGoogle Scholar
  24. Harris C, Arenson LU, Christiansen HH et al (2009) Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Sci Rev 92:117–171. doi: 10.1016/j.earscirev.2008.12.002 CrossRefGoogle Scholar
  25. Huggel C, Salzmann N, Allen S, Caplan-Auerbach J, Fischer L, Haeberli W, Larsen C, Schneider D, Wessels R (2010) Recent and future warm extreme events and high-mountain slope stability. Philos Trans R Soc a-Math Phys Eng Sci 368:2435–2459. doi: 10.1098/rsta.2010.0078 CrossRefGoogle Scholar
  26. Huggel C, Clague JJ, Korup O (2012) Is climate change responsible for changing landslide activity in high mountains? Earth Surf Process Landforms 37:77–91. doi: 10.1002/esp.2223 CrossRefGoogle Scholar
  27. Jomelli V, Pech VP, Chochillon C, Brunstein D (2004) Geomorphic variations of debris flows and recent climatic change in the French Alps. Clim Change 64:77–102. doi: 10.1023/b:clim.0000024700.35154.44 CrossRefGoogle Scholar
  28. Jomelli V, Delval C, Grancher D, Escande S, Brunstein D, Hetu B, Filion L, Pech P (2007) Probabilistic analysis of recent snow avalanche activity and weather in the French Alps. Cold Reg Sci Technol 47:180–192. doi: 10.1016/j.coldregions.2006.08.003 CrossRefGoogle Scholar
  29. Kääb A, Huggel C, Barbero S, Chiarle M, Cordola M, Epifani F, Haeberli W, Mortara G, Semino P, Tamburini A, Viazzo G (2004) Glacier hazards at Belvedere Glacier and the Monte Rosa east face, Italian Alps: processes and mitigation. In: 10th congress interpraevent 2004, Riva del Garda, vol 1, pp 67–78Google Scholar
  30. Kääb A, Chiarle M, Raup B, Schneider C (2007) Climate change impacts on mountain glaciers and permafrost. Glob Planet Change 56:vii–ixGoogle Scholar
  31. Kirchner M, Faus-Kessler T, Jakobi G, Leuchner M, Ries L, Scheel HE, Suppan P (2013) Altitudinal temperature lapse rates in an Alpine valley: trends and the influence of season and weather patterns. Int J Climatol 33:539–555. doi: 10.1002/joc.3444 CrossRefGoogle Scholar
  32. Lucchesi S, Fioraso G, Bertotto S, Chiarle M (2014) Little Ice Age and contemporary glacier extent in the Western and South-Western Piedmont Alps (North-Western Italy). J Maps 10:409–423Google Scholar
  33. Marchi L, Tecca PR (1996) Magnitudo delle colate detritiche nelle Alpi Orientali Italiane. Geoing Ambient e Mineraria 33:79–86Google Scholar
  34. McSaveney MJ (2002) Recent rockfalls and rock avalanches in Mount Cook national park, New Zealand. Rev Eng Geol 15:35–70CrossRefGoogle Scholar
  35. Mortara G, Giuliano M (2009) La colata detritica del 7 settembre 2008 nel bacino glaciale della Torre di Castelfranco. In: Mortara G, Tamburini A (eds) Il ghiacciaio del Belvedere e l’emergenza del lago Effimero. Edizioni Società Meteorologica Subalpina, Castello Borello, Bussoleno, pp 135–139Google Scholar
  36. Mortara G, Palomba M (2009) Il Ghiacciaio Superiore di Coolidge (Monviso) a venti anni dal crollo del 6 luglio 1989. Nimbus 53–54:30–31Google Scholar
  37. Mortara G, Tamburini A (2009) Il ghiacciaio del Belvedere e l’emergenza del lago Effimero. Edizioni Società Meteorologica Subalpina, Castello Borello, BussolenoGoogle Scholar
  38. Mortara G, Dutto F, Godone F (1995) Effetti degli eventi alluvionali nell’ambiente proglaciale. La sovraincisione della morena del Ghiacciaio del Mulinet (Stura di Valgrande, Alpi Graie). Geogr Fis Dinam Quat 18:295–304Google Scholar
  39. Nigrelli G, Collimedaglia M (2012) Reconstruction and analysis of two long-term precipitation time series: Alpe Devero and Domodossola (Italian Western Alps). Theor Appl Climatol 109:397–405CrossRefGoogle Scholar
  40. Noetzli J, Hoelzle M, Haeberli W (2003) Mountain permafrost and recent Alpine rock-fall events: a GIS-based approach to determine critical factors. Permafrost 2:827–832Google Scholar
  41. Saez JL, Corona C, Stoffel M, Berger F (2013) Climate change increases frequency of shallow spring landslides in the French Alps. Geology 41:619–622CrossRefGoogle Scholar
  42. Stocker TF, Qin D, Platner GK (2013) Climate change 2013: the physical science basis work. Gr. I Contrib. to Fifth Assess. Rep. Intergov. Panel Clim. Chang. Summ. Policymakers (IPCC, 2013)Google Scholar
  43. Tamburini A, Villa F, Fischer L, Hungr O, Chiarle M, Mortara G (2013) Slope instabilities in high-mountain rock walls. Recent Events on the Monte Rosa East Face (Macugnaga, NW Italy). Landslide Sci. Pract. Springer, Berlin, pp 327–332Google Scholar
  44. Tarquini S, Isola I, Favalli M, Mazzarini F, Bisson M, Pareschi MT, Boschi E (2007) TINITALY/01: a new triangular irregular network of Italy. Ann Geophys 50:407–425Google Scholar
  45. Tarquini S, Vinci S, Favalli M, Doumaz F, Fornaciai A, Nannipieri L (2012) Release of a 10-m-resolution DEM for the Italian territory: comparison with global-coverage DEMs and anaglyph-mode exploration via the web. Comput Geosci 38:168–170. doi: 10.1016/j.cageo.2011.04.018 CrossRefGoogle Scholar
  46. UIPO (1913-1994) Annali idrologici, Parte prima. Ufficio Idrografico del Po, ParmaGoogle Scholar
  47. World Meterological Organization (2011) Guide to climatological practices (WMO-No. 100), 3rd edn. Geneva, pp 180Google Scholar
  48. Zemp M, Paul F, Hoelzle M, Haeberli W (2008) Glacier fluctuations in the European Alps, 1850–2000. Darkening Peaks Glacier: Glacier Retreat, Science, and Society 152Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Roberta Paranunzio
    • 1
    • 2
    Email author
  • Francesco Laio
    • 2
  • Guido Nigrelli
    • 1
  • Marta Chiarle
    • 1
  1. 1.Research Institute for Geo-hydrological ProtectionNational Research Council (CNR-IRPI)TurinItaly
  2. 2.Department of Environment, Land and Infrastructure EngineeringPolitecnico di TorinoTurinItaly

Personalised recommendations