Skip to main content

Advertisement

Log in

Advance survey and modelling technologies for the study of the slope stability in an Alpine basin

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Alpine basins are typically characterised by an amphitheatre shape with steep rocky walls on the upper, a deposition zone of glacial debris in the middle and a channel in the lower part. All different parts are in constant evolution, and different kinds of instability phenomena can be identified: rock fall at the top rocky walls, rotational sliding of the deposit and debris flow in the channel down the valley. The different kinds of instability are somehow connected among them since the rock fall can power the rock debris that can trigger a debris flow. All different phenomena are chained in a global basin evolution also connected with seasonal climate variation that can induce different water presence and different water phase (liquid/solid). Moreover, instability phenomena seam to increase in frequencies and magnitudes in the latest decades possibly connected to climate change. This paper reports a study of the stability condition of an Alpine basin in North-West Italy by applying advance survey and modelling techniques: aerial photogrammetric survey of the rock wall, limit equilibrium methods that take ice presence into account and finally numerical analysis of the debris evolution along the slope. Parametric analyses aimed to quantify the influence of the different most important aspects have also been carried on. The application of advanced tools helped to better understand the study area failure and evolution mechanisms and to identify the main points to investigate in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Barazzetti L, Forlani G, Remondino F, Roncella R, Scaioni M (2011) Experiences and achievements in automated image sequence orientation for close-range photogrammetric projects. In: Proceedings SPIE 8085, videometrics, range imaging, and applications XI, 80850F, Munich, Germany

  • Cascini L, Bonnard C, Corominas J, Jibson R, Montero-Olarte J (2005) Landslide hazard and risk zoning for urban planning and development (State of the Art Report). In: Hungr O, Fell R, Couture R, Eberhardt E, Balkema AA (eds), Proceedings of the international conference on landslide risk management. Rotterdam, The Netherlands

  • Censicro (2009) Censimento dei Crolli in Roccia in alta quota. Relazione tecnica finale Ing. Michêle Curtaz. Internal report

  • Corominas J (1996) The angle of reack as a mobility index for small and large landslides. Can Geotech J 33:260–271

    Article  Google Scholar 

  • Curtaz M, Ferrero AM, Forlani G, Migliazza M, Roncella R, Vagliasindi M (2011) Test of a procedure to assess the stability of permafrost rock walls: the case of Pellaud basin, Rhêmes Valley (Aosta Valley, Italy). In: Margottini C (ed.), Landslide science and practice 4: 391–392. Proceedings of the Second World Landslide Forum, Rome, Italy

  • Curtaz M, Ferrero AM, Migliazza M (2012) Study on the mechanical degradation of a frozen Alpine soil. In: Proceedings of the 10th International conference on permafrost resources and risks of permafrost areas in a changing world TICOP. The Northern Publisher. Volume 1: p 100–108

  • Curtaz M, Ferrero AM, Roncella R, Segalini A, Umili G (2014) Terrestrial photogrammetry and numerical modelling for the stability analysis of rock slopes in high mountain areas: Aiguilles Marbrées case. Rock Mech Rock Eng 47(2):605–620. doi:10.1007/s00603-013-0446-z

    Article  Google Scholar 

  • Ferrero AM, Forlani G, Roncella R, Voyat HI (2009) Advanced geo structural survey methods applied to rock mass characterization. Rock Mech Rock Eng 42(4):631–665

    Article  Google Scholar 

  • Ferrero AM, Migliazza M, Roncella R, Segalini A (2011) Rock cliffs hazard analysis based on remote geostructural surveys: the Campione del Garda case study (Lake Garda, Northern Italy). Geomorphology 125(4):457–471. doi:10.1016/j.geomorph.2010.10.009

    Article  Google Scholar 

  • Ferrero AM, Godio A, Migliazza M, Sambuelli L, Segalini A, Théodule A (2014) Geotechnical and geophysical characterization of frozen granular material. In: Shan W, Guo Y, Wang F, Marui H, Strom A (eds) Landslides in cold regions in the context of climate change. Springer, New York, pp 205–218

  • Gruber S, Hoelzle M, Haeberli W (2004) Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophys Res Lett 31:L13504

    Article  Google Scholar 

  • Haeberli W, Wegmann M, Vonder Muhll D (1997) Slope stability problems related to glacier shrinkage and permafrost degradation in the Alps. Eclogae Geol Helv 90(3):407–414

    Google Scholar 

  • Harris C, Arenson LU, Christiansen HH, Etzelmüller B, Frauenfelder R, Gruber S, Haeberli W, Hauck C, Hölzle M, Humlum O, Isaksen K, Kääb A, Kern-Lütschg MA, Lehning M, Matsuoka N, Murton JB, Nötzli J, Phillips M, Ross N, Seppälä M, Springman SM, Vonder Mühll D (2009) Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth Sci Rev 92:117–171

    Article  Google Scholar 

  • Hoek E, Bray JW (1981) Rock slope engineering: third edition. CRC Press, Florida. ISBN 0-419-16010-8

    Google Scholar 

  • Hudson J, Harrison JP (1997) Engineering rock mechanics. An introduction to the principles. Elsevier Ltd, Amsterdam. ISBN 978-0-08-043864-1

    Google Scholar 

  • Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32(4):610–623

    Article  Google Scholar 

  • Hungr O, Evans SG (1996) Rock avalanche runout prediction using a dynamic model. In: Senneset K (ed) Landslides. Balkema, Rotterdam, pp 233–238

  • Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three.dimensional terrain—1: Coulomb mixture theory. J Geophys Res 106(B1):537–552

    Article  Google Scholar 

  • Jomelli V, Pech P, Chochillon C, Brunstein D (2004) Geomorphic variations of debris flows and recent climatic change in the French alps. Clim Change V64(1):77–102

    Article  Google Scholar 

  • Jomelli V, Brunstein D, Grancher D, Pech P (2007) Is the response of hill slope debris flows to recent climate change univocal? A case study in the Massif des Ecrins (French Alps). Clim Change 85(1–2):119–137

    Article  Google Scholar 

  • Markland JT (1972) A useful technique for estimating the stability of rock slopes when the rigid wedge sliding type of failure is expected. Imp Coll Rock Mech Res Rep 19:10

    Google Scholar 

  • McDougall S, Hungr O (2005) Dynamic modelling of entrainment in rapid landslides. Can Geotech J 42(5):1437–1448

    Article  Google Scholar 

  • Noetzli J, Gruber S, Kohl T, Salzmann N, Haeberli W (2007) Three-dimensional distribution and evolution of permafrost temperatures in idealized high-mountain topography. J Geophys Res 112:F02S13

    Article  Google Scholar 

  • O’Brien JS, Julien PY, Fullerton WT (1993) Two-dimensional water flood and mudflow simulation. J Hydrol Eng 119(2):244–261

    Article  Google Scholar 

  • Pirulli M (2005) Numerical modelling of landslide runout: a continuum mechanics approach. PhD Thesis in geotechnical engineering, Politecnico di Torino, Italy

  • Pirulli M (2010) Morphology and substrate control on the dynamics of flowlike landslides. J Geotech Geoenviron Eng 136(2):376–388

    Article  Google Scholar 

  • Pirulli M, Marco F (2010) Description and numerical modelling of the October 2000 Nora debris flow, Northwestern Italian Alps. Can Geotech J 47(2):135–146

    Article  Google Scholar 

  • Pirulli M, Sorbino G (2008) Assessing potential debris flow runout: a comparison of two simulation models. Nat Hazards Earth Sys Sci 8:961–971

    Article  Google Scholar 

  • Pirulli M, Bristeau MO, Mangeney A, Scavia C (2007) The effect of the earth pressure coefficients on the runout of granular material. Environ Model Softw 22(10):1437–1454

    Article  Google Scholar 

  • Quan Luna B, van Westen CJ, Jetten V, Cepeda J, Stumpf A, Malet JP, Medina-Cetina Z, van Asch TWJ (2010) A preliminary compilation of calibrated rheological parameters used in dynamic simulations of landslide run-out. In: Malet JP, Glade T, Casagli N (eds.), Mountain risks: bringing science to society—proceedings of the mountain risks international conference. CERG, Strasbourg, pp 255–260

  • Ravanel L, Deline P (2011) Climate influence on rockfalls in high-Alpine steep rockwalls: the north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the ‘Little Ice Age’. Holocene 21(2):357–365

    Article  Google Scholar 

  • Rebetez M, Lugon R, Baeriswyl PA (1997) Climatic change and debris flows in high mountain regions: the case study of the Ritigraben torrent (Swiss Alps). Clim Change V36(3):371–389

    Article  Google Scholar 

  • Rickenmann D (1999) Empirical relationships for debris flows. Natl. Hazards 19(1):47–77

    Article  Google Scholar 

  • Rickenmann D (2005) Runout prediction methods. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer, Heidelberg, pp 305–324

    Chapter  Google Scholar 

  • Sattler K, Keiler M, Zischg A, Schrott L (2008) Relation between changes in debris-flow activity and degradation of alpine permafrost: a case study from the Schnalstal, Southern Oetztal Alps. Geophys Res Abstr 10: EGU2008-A-09855

  • Schoeneich P, Dall’Amico M, Deline P, Zischg A (2011) Hazards related to permafrost and to permafrost degradation. PermaNET project, state-of-the-art report 6.2. On-line publication ISBN 978-2-903095-59-8

  • Voellmy A (1955) Über die Zerstorungkraft von Lawinen. Schweizerische Bauzeitung 73:212–285

    Google Scholar 

  • Voyat IH, Roncella R, Forlani G, Ferrero AM (2006) Advanced techniques for geo structural surveys in modelling fractured rock masses: application to two Alpine sites. GoldenRocks 2006: 41st US rock mechanics symposium, Golden, Colorado

  • Yoon WS, Jeong UJ, Kim JH (2002) Kinematic analysis for sliding failure of multi-faced rock slopes. Eng Geol 67:51–61

    Article  Google Scholar 

  • Zimmermann M, Mani P, Gamma P, Gsteiger P, Heiniger O, Hunziker G (1997) Murganggefahr und Klimaänderung-ein GIS-basierter Ansatz. Schlussbericht NFP 31, vdf Hochschulverlag an der ETH, Zürich, p 161

  • Zischg A, Curtaz M, Galuppo A, Lang K, Mayr V, Riedl C, Schoeneich P (2011) Chapter 2: permafrost and debris flows. In: Schoeneich P et al. (eds.), Hazards related to permafrost and to permafrost degradation. PermaNET project, state-of-the-art report 6.2. On-line publication, p 29–66. ISBN 978-2-903095-59-8

Download references

Acknowledgments

This work has been realised and funded in the framework of the project RiskNat (2007–2013 Operational programme for cross-border cooperation Italy—France, Alps-ALCOTRA), in particular in activities B1–C1 ‘Hazards deriving from high mountain environment evolution’ in collaboration with Fondazione Montagna Sicura.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Pirulli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrero, A.M., Migliazza, M. & Pirulli, M. Advance survey and modelling technologies for the study of the slope stability in an Alpine basin. Nat Hazards 76, 303–326 (2015). https://doi.org/10.1007/s11069-014-1490-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-014-1490-z

Keywords

Navigation