Large wood transport as significant influence on flood risk in a mountain village

Abstract

An important issue that is not considered in most flood risk assessments in mountain villages in Spain is the transport of solids associated with the flood flow, in this case, large wood transport. The transport and deposition of this wood in urban areas may be a potentially worse hazard than the flood flow itself. Despite its importance, large wood is a key ecological element in rivers, so removing it could be an unsuccessful approach. Therefore, efforts are needed in the better understanding of wood transport and deposition in streams. To analyse this process, scenario-based 2D hydrodynamic flood modelling was carried out. Since flood risk assessment has considerable intrinsic uncertainty, probabilistic thinking was complemented by possibilistic thinking, considering worst-case scenarios. This procedure obtained a probabilistic flood map for a 500-year return period. Then, a series of scenarios was built based on wood budget to simulate wood transport and deposition. Results allowed us to identify the main infrastructures sensitive to the passing of large wood and simulate the consequences of their blockage due to wood. The potential damage was estimated as well as the preliminary social vulnerability for all scenarios (with and without wood transport). This work shows that wood transport and deposition during flooding may increase potential damage at critical stream configurations (bridges) by up to 50 % and the number of potentially exposed people nearby these areas by up to 35 %.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abt SR, Wittler RJ, Taylor A, Love DJ (1989) Human stability in a high hazard flood zone. Water Resour Bull 25(4):881–890

    Article  Google Scholar 

  2. Apel H, Thieken AH, Merz B, Blöschl G (2004) Flood risk assessment and associated uncertainty. Nat Hazards Earth Syst Sci 4:295–308

  3. Ballesteros-Canovas JA, Sanchez-Silva M, Bodoque JM, Diez-Herrero A (2013) An integrated approach to flood risk management: a case study of navaluenga (Central Spain). Water Resour Manage 27:3051–3069

    Article  Google Scholar 

  4. Bates PD, Horritt MS, Aronica G, Beven K (2004) Bayesian updating of flood inundation likelihoods conditioned on flood extent data. Hydrol Process 18:3347–3370

    Article  Google Scholar 

  5. Bezzola GR, Hegg C (eds) (2007) Ereignisanalyse Hochwasser 2005. Teil 1 Prozesse, Schäden und erste Einordnung. Bundesamt für Umwelt BAFU, Eidgenössische Forschungsanstalt WSL. Umweltwissen 0707, Bern

  6. Bladé E, Cea L, Corestein G, Escolano E, Puertas J, Vázquez-Cendón ME, Dolz J, Coll A (2012) Iber – Herramienta de simulación numérica del flujo en ríos. Rev Int Metod Numer 30:1–10

    Google Scholar 

  7. Blaschke T, Burnett C, Pekkarinen A (2004) New contextual approaches using image segmentation for object-based classification. In: De Meer F, de Jong S (eds) Remote sensing image analysis: including the spatial domain. Kluver Academic Publishers, Dordrecht, pp 211–236

    Google Scholar 

  8. Bocchiola D, Rulli M, Rosso R (2006) Transport of large woody debris in the presence of obstacles. Geomorphology 76:166–178

    Article  Google Scholar 

  9. Bocchiola D, Rulli MC, Rosso R (2008) A flume experiment on the formation of wood jams in rivers. Water Resour 44:1–17

    Google Scholar 

  10. Bradley C, Mosugu M, Gerrard AJ (2005) Simulation modelling of water movement in a cracking clay soil. Soil Use Manag 21:386–395

    Article  Google Scholar 

  11. Braudrick CA, Grant GE, Ishikawa Y, Ikeda H (1997) Dynamics of wood transport in streams: a flume experiment. Earth Surf Proc Land 22:7

    Article  Google Scholar 

  12. Brooks AP, Abbe T, Cohen T, Marsh N, Mika S, Boulton A, Broderick T, Borg D, Rutherfurd I (2006) Design guidelines for the reintroduction of wood into Australian streams. Land & Water Australia, Canberra

    Google Scholar 

  13. Buxton TH (2010) Modelling entrainment of waterlogged large wood in stream channels. Water Resour Res 46:10

    Article  Google Scholar 

  14. Chow VT (1959) Open-channel hydraulics. McGraw-Hill, New York

    Google Scholar 

  15. Comiti F, Mao L, Wilcox A, Wohl E, Lenzi M (2007) Field-derived relationships for flow velocity and resistance in high-gradient streams. J Hydrol 340:48–62

    Article  Google Scholar 

  16. Comiti F, Agostino VD, Moser M, Lenzi MA, Bettella F, Agnese AD, Rigon E, Gius S, Mazzorana B (2012) Preventing wood-related hazards in mountain basins: from wood load estimation to designing retention structures. In: 12th congress INTERPRAEVENT 2012—Grenoble/France conference proceedings, pp 651–662

  17. Di Baldassarre G, Schumann G, Bates P, Freer J, Beven K (2010) Floodplain mapping: a critical discussion on deterministic and probabilistic approaches. Hydrol Sci J 55(3):364–376

    Article  Google Scholar 

  18. Diehl TH (1997) Potential drift accumulation at bridges, FHWA-RD-97-28. U.S. Department of Transportation, Federal Highway Administration, Washington

    Google Scholar 

  19. Dudley SJ, Fischenich JC, Abt SR (1998) Effect of woody debris entrapment on flow resistance. J Am Water Resour As 34:1189–1197

    Article  Google Scholar 

  20. Faulkner H, Parker D, Green C, Beven K (2007) Developing a translational discourse to communicate uncertainty in flood risk between science and the practitioner. Ambio 36:692–703

    Article  Google Scholar 

  21. Fellin W, Lessmann H, Oberguggenberger M, Vieider R (2005) Analysing uncertainty in civil engineering. Springer, Berlin. ISBN 3-540-22246-4

    Google Scholar 

  22. Gaál L, Szolgay J, Kohnová S, Hlavcová K, Viglione A (2010) Inclusion of historical information in flood frequency analysis using a Bayesian MCMC technique: a case study for the power dam Orlík, Czech Republic. Contrib Geophys Geod 40:121–147

    Google Scholar 

  23. Gaume E, Gaál L, Viglione A, Szolgay J, Kohnova S, Blöschl G (2010) Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites. J Hydrol 394:101–117

    Article  Google Scholar 

  24. Gippel CJ (1995) Environmental hydraulics of large woody debris in streams and rivers. J Environ Eng ASCE 121:388–395

    Article  Google Scholar 

  25. Gómez M, Macchione F, Russo B (2010) Hazard criteria related to urban flooding produced by heavy storm events. In: Proceedings of 1st European congress of the IAHR. Edinburgh, May 4–6

  26. Haque CE, Etkin D (2007) People and community as constituent parts of hazards: the significance of societal dimensions in hazards analysis. Nat Hazards 41:271–282

    Article  Google Scholar 

  27. Jarrett RD, (1990) Paleohydrology used to define the spatial occurrence of floods. Geomorphol 3:81–95

  28. Kang JL, Su MD, Chang LF (2005) Loss functions and frame-work for regional flood damage estimation in residential area. J Mar Sci Technol 13:193–199

    Google Scholar 

  29. Kelman I, Thomalla F, Brown J, Möller I, Spence R, Spencer T (2002) Coastal flood-risk assessment in England. Philos Trans R Soc Lond A360(1796):1553–1554

    Google Scholar 

  30. Komatina D (2005) Uncertainty analysis as a complement to flood risk assessment. http://daad.wb.tuharburg.de/fileadmin/BackUsersResources/Risk/Dejan/UncertaintyAnalysis.pdf

  31. Kreibich H, Seifert I, Merz B, Thieken AH (2010) Development of FLEMOcs—a new model for the estimation of flood losses in the commercial sector. Hydrol Sci 55(8):1302–1314

  32. Kuczera G (1999) Comprehensive at-site flood frequency analysis using Monte Carlo Bayesian inference. Water Resour Res 35(5):1551–1557

    Article  Google Scholar 

  33. Lassettre NS, Kondolf GM (2012) Large woody debris in urban stream channels: redefining the problem. River Res Appl 28:1477–1487

    Article  Google Scholar 

  34. LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge University Press, Cambridge

    Google Scholar 

  35. Lyn D, Cooper T, Condon D, Gan L (2007) Factors in debris accumulation at bridge piers. Department of Transportation, Federal Highway Administration Research and Development, Turner-Fairbank Highway Research Center, Washington

    Google Scholar 

  36. Manga M, Kirchner JW (2000) Stress partitioning in streams by large woody debris. Water Resour 36:2373–2379

    Article  Google Scholar 

  37. Mao L, Comiti F (2010) The effects of large wood elements during an extreme flood in a small tropical basin of Costa Rica. In: De Wrachien D, Brebbia CA (eds) Debris flow III. WIT Press, UK, pp 225–236

    Google Scholar 

  38. Martin DJ, Benda LE (2001) Patterns of in-stream wood recruitment and transport at the watershed scale. Trans Am Fish Soc 130:940–958

    Article  Google Scholar 

  39. May CL, Gresswell RE (2003) Large wood recruitment and redistribution in headwater streams in the southern Oregon Coast Range, U.S.A. Can J For Res 33:1352

    Article  Google Scholar 

  40. Mazzorana B, Hübl J, Zischg AM, Largiader A (2010) Modelling woody material transport and deposition in alpine rivers. Nat Hazards 56:425–449

    Article  Google Scholar 

  41. Mazzorana B, Comiti F, Volcan C, Scherer C (2011) Determining flood hazard patterns through a combined stochastic–deterministic approach. Nat Hazards 59:301–316

    Article  Google Scholar 

  42. Merz B, Thieken AH, Blöschl, G (2002) Uncertainty analysis for flood risk estimation. In: Spreafico M, Weingartner R. (eds) International conference on flood estimation. CHR Report II-17, pp 577–585

  43. Merz B, Thieken AH, Gocht M (2007) Flood risk mapping at the local scale: concepts and challenges. In: Begum S, Stive MJF, Hall JW (eds) Flood risk management in Europe: innovation in policy and practice. Series: advances in natural and technological hazards research, vol 25. Springer, Dordrecht, Chapter 13, pp 231–251

  44. Merz B, Hall J, Disse M, Schumann A (2010) Fluvial flood risk management in a changing world. Nat Hazards Earth Syst Sci 10:509–527. doi:10.5194/nhess-10-509-2010

    Article  Google Scholar 

  45. Messner F, Meyer V (2005) Flood damage, vulnerability and risk perception. Challenges for flood damage research. UFZ, Leipzig 26 p

    Google Scholar 

  46. Messner F, Penning-Rowsell E, Green C, Meyer V, Tunstall S, van der Veen A (2007) Guide- lines for socio-economic flood damage evaluation. FLOODsite-Report T09-06-01, 176 pp

  47. MFE (2011) El Mapa Forestal de España 1:25000 (MFE), Ministerio de Agricultura, Alimentación y Medio Ambiente (MARM). http://www.magrama.es/es/biodiversidad/temas/montes-y-politica-forestal/mapa-forestal/mfe_25.aspx

  48. NRC (National Research Council) (2000) Risk analysis and uncertainty in flood damage reduction studies. National Academy Press, Washington

    Google Scholar 

  49. Ollero A (2013) ¿Por qué NO hay que limpiar los ríos? http://river-keeper.blogspot.ch/2013/01/por-que-no-hay-que-limpiar-los-rios.html

  50. Pappenberger F, Frodsham K, Beven J, Frodsham K, Romanovicz R, Matgen P (2006) Fuzzy set approach to calibrating distributed flood inundation models using remote sensing observations. Hydrol Earth Syst Sci Discuss 3:2243–2277

    Article  Google Scholar 

  51. Paté-Cornell ME (1996) Uncertainties in risk analysis: six levels of treatment. Reliab Eng Syst Saf 54:95–111

    Article  Google Scholar 

  52. PATRICOVA (2002) Plan de acción territorial de carácter sectorial sobre prevención del riesgo de inundación en la comunidad valenciana. Documento No 1. Dirección General de Urbanismo y Ordenación Territorial, Generalitat Valenciana, Valencia

  53. Reese S, Markau HJ, Sterr H (2003) MERK—Micro-scale evaluation of risks in flood-prone coastal lowlands. Research project on commission of the Federal Ministry of Research and the State of Schleswig-Holstein Government

  54. Reis DS, Stedinger JR (2005) Bayesian MCMC flood frequency analysis with historical information. J Hydrol 313(1–2):97–116. doi:10.1016/j.jhydrol.2005.02.028

    Article  Google Scholar 

  55. Reiter P (2000) International methods of risk analysis, damage evaluation and social impact studies concerning dam-break accidents. PR Water Consulting, Helsinki

    Google Scholar 

  56. Rickenmann D (1997) Schwemmholz und hochwasser. Wasser Energie Luft 89(5/6):115–119

    Google Scholar 

  57. Robison EG, Beschta RL (1990) Identifying trees in riparian areas that can provide coarse woody debris to streams. For Sci 36:790–801

    Google Scholar 

  58. Romanowicz R, Beven KJ (2003) Bayesian estimation of flood inundation probabilities as conditioned on event inundation maps. Water Resour Res 39:3

    Article  Google Scholar 

  59. Ruiz-Villanueva V, Bodoque JM, Díez-Herrero A, Eguibar MA, Pardo-Igúzquiza E (2012) Reconstruction of an ungauged flash flood event with large wood transport and its influence on hazard patterns. Hydrol Process. doi:10.1002/hyp.9433

    Google Scholar 

  60. Ruiz-Villanueva V, Díez-Herrero A, Bodoque JM, Ballesteros JA, Stoffel M (2013) Characterization of flash floods in small ungauged mountain basins of central Spain using an integrated approach. Catena 110:32–43

    Article  Google Scholar 

  61. Ruiz-Villanueva V, Bladé-Castellet E, Sánchez-Juny M, Martí B, Díez Herrero A, Bodoque JM (2014a) Two dimensional numerical modelling of wood transport. J Hydroinf. doi: 10.2166/hydro.2014.026

  62. Ruiz-Villanueva V, Díez-Herrero A, Ballesteros JA, Bodoque JM (2014b) Potential Large Woody Debris recruitment due to landslides, bank erosion and floods in mountain basins: a quantitative estimation approach. River Res Appl 30:81–97

    Article  Google Scholar 

  63. Russo B, Gómez M, Macchione F (2011) Experimental approach to determine flood hazard criteria in urban areas. 12th international conference on urban drainage, Porto Alegre/Brazil, 10–15 September 2011

  64. Schmocker L, Hager W (2010) Drift accumulation at river bridges. In: Dittrich A, Koll K, Aberle J, Geisenhainer P (eds) River flow 2010. Bundesanstalt für Wasserbau

  65. Schmocker L, Hager W (2011) Probability of drift blockage at bridge decks. J Hydraul Eng 137(4):470–479

    Article  Google Scholar 

  66. Schmocker L, Weitbrecht V (2013) Driftwood: risk analysis and engineering measures. J Hydraul Eng 139(7):683–695

    Article  Google Scholar 

  67. Shand TD, Cox RJ, Blacka MJ, Smith GP (2010) Appropriate safety criteria for vehicles 14. Report number: P10/S1/006. Australian Rainfall and Runoff, 28 pp

  68. Swanson FJ (2003) Wood in rivers: a landscape perspective. Am Fish Soc Symp 37:299–313

    Google Scholar 

  69. Yen BC, Tung YK, (1993) Some recent progress in reliability analysis for hydraulic design. In: Yen BC, Tung YK. (eds) Reliability and uncertainty analysis in hydraulic design: A report prepared by the subcommittee on uncertainty and reliability analysis in design of hydraulic structures of the technical committee on probabilistic approaches to hydraulics. ASCE, New York, pp 35–79

  70. USACE (1992) (U.S. Army Corps of Engineers). Guidelines for risk and uncertainty analysis in water resources planning. Institute for Water Resources, IWR report 92-R-1, Fort Belvoir, VA

  71. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics. Pearson Education Limited, Harlow. ISBN 978-0-13-127498-3

    Google Scholar 

  72. Waldner P, Rickli C, Köchli D, Usbeck T, Schmocker L, Sutter F (2007) Schwemmholz [driftwood]. In: Bezzola GR, Hegg C (eds) Umwelt-Wissen 0707, pp 181–193 (in German)

  73. Wallingford HR (2005) The flood risk to people methodology. Flood risks to people, phase 2 R&D output FD2321/TR1. Defra/Environment Agency Flood and Coastal Defence R&D Programme

  74. Wind HG, Nierop TM, de Blois CJ, de Kok JL (1999) Analysis of flood damages from the 1993 and 1995 Meuse floods. Water Resour Res 35(11):3459–3465

    Article  Google Scholar 

  75. Yeo SW (1998) Controls on flood damages, Ba River Valley, Fiji. Unpublished Ph.D. thesis, Natural Hazards Research Centre, School of Earth Sciences, Macquarie University

  76. Young WJ (1991) Flume study of the hydraulic effects of large woody debris in lowland rivers. Regul Rivers Res Manag 6:203–212

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by CICYT MAS Dendro-Avenidas project (CGL 2010-19274) and the Geological Survey of Spain (IGME). We are grateful to the Confederación Hidrográfica del Tajo and Meteorological Agency (AEMET) for having provided meteorological data; the Junta de Castilla y León in Ávila, Ayuntamiento de Arenas de San Pedro (particularly to Nuria Blázquez, Gloria Suárez and Sixto Díaz) for their collaboration. Special mention to Martí Sánchez-Juni (UPC) for his collaboration; and to Ignacio Gutiérrez, Luis Fernández and Luis Barca for their assistance with the topographical survey.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Ruiz-Villanueva.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Villanueva, V., Bodoque, J.M., Díez-Herrero, A. et al. Large wood transport as significant influence on flood risk in a mountain village. Nat Hazards 74, 967–987 (2014). https://doi.org/10.1007/s11069-014-1222-4

Download citation

Keywords

  • Flood risk
  • Large wood transport
  • Drift wood
  • Woody debris