Natural Hazards

, Volume 73, Issue 2, pp 1063–1084 | Cite as

The sun-hurricane connection: Diagnosing the solar impacts on hurricane frequency over the North Atlantic basin using a space–time model

  • Robert E. Hodges
  • Thomas H. Jagger
  • James B. Elsner
Original Paper

Abstract

The authors define a spatio-statistical response of hurricane frequency to the solar cycle. Previous research indicates reduced (increased) hurricane intensities and frequency in the western (eastern) tropical Atlantic. However, no formal quantitative relationship has been spatially established between hurricane frequency and solar activity. The authors use a Bayesian hierarchical space–time model, an increasingly popular approach due to its advantage in facilitating regression modeling of space–time phenomena in the context of large data sets. Regional hurricane frequency over the period 1866–2010 is examined in response to September sunspot number (SSN) while controlling for other relevant climate factors. The response features a 13 % reduction in probability of annual hurricane occurrence for southeastern Cuba, the southern Bahama islands, Haiti, and Jamaica when the SSN is 80 sunspots. In contrast, hurricane risk in regions of the southeastern Atlantic is predicted to increase by 73 % when the SSN is 160 sunspots. The model can be ported to explore other relationships over contiguous space.

Keywords

Sunspots Hurricanes North Atlantic Oscillation El Niño Southern Oscillation Sea-surface temperatures Risk Bayesian Space–time model Hexagon tessellation 

References

  1. Allan R, Nicholls N, Jones P, Butterworth I (1991) A further extension of the Tahiti-Darwin SOI, early SOI results and Darwin pressure. J Clim 4:743–749CrossRefGoogle Scholar
  2. Arkin P (1982) The relationship between interannual variability in the 200mb tropical wind field and the Southern Oscillation. Mon Weather Rev 110:1393–1404CrossRefGoogle Scholar
  3. Berliner L (1996) Hierarchical Bayesian time series models. In: Hanson K, Silver R (eds) Maximum entropy and Bayesian methods. Kluwer Academy, DordrechtGoogle Scholar
  4. Besag J, York J, Mollie A (1991) Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math 43:1–59CrossRefGoogle Scholar
  5. Bhatt N, Jain R, Aggarwal M (2009) Prediction of the maximum amplitude and timing of sunspot cycle 24. Sol Phys 260:225–232CrossRefGoogle Scholar
  6. Cohen T, Sweetser E (1975) The ‘spectra’ of the solar cycle and of data for Atlantic tropical cyclones. Nature 256:295–296CrossRefGoogle Scholar
  7. Elsner J, Hodges R, Jagger T (2011) Spatial grids for hurricane climate research. Clim Dyn 39:21–36CrossRefGoogle Scholar
  8. Elsner J, Jagger T (2008) United States and Caribbean tropical cyclone activity related to the solar cycle. Geophys Res Lett 35:L18,705CrossRefGoogle Scholar
  9. Elsner J, Jagger T (2013) Hurricane climatology: a modern statistical approach using R. Oxford University Press, OxfordGoogle Scholar
  10. Elsner J, Jagger T, Dickinson M, Rowe D (2008) Improving multiseason forecasts of North Atlantic hurricane activity. J Appl Meteorol Climatol 21:1209–1219Google Scholar
  11. Elsner J, Jagger T, Hodges R (2010) Daily tropical cyclone intensity response to solar ultraviolet radiation. Geophys Res Lett 37:L09,701CrossRefGoogle Scholar
  12. Elsner J, Kocher B (2000) Global tropical cyclone activity: a link to the North Atlantic Oscillation. Geophys Res Lett 27:129–132CrossRefGoogle Scholar
  13. Elsner J, Liu K, Kocher B (2000) Spatial variations in major US hurricane activity: statistics and a physical mechanism. J Clim 13:2293–2305CrossRefGoogle Scholar
  14. Emanuel K (1987) The dependence of hurricane intensity on climate. Nature 326:483CrossRefGoogle Scholar
  15. Emanuel K, Solomon S, Follini D, Davis S, Cagnazzo C (2013) Influence of tropical tropopause layer cooling on Atlantic hurricane activity. J ClimGoogle Scholar
  16. Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical odels. Cambridge University Press, CambridgeGoogle Scholar
  17. Gelman A, Rubin D (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472CrossRefGoogle Scholar
  18. Gilks W, Richardson S, Spiegelhalter DJ (eds) (1996) Markov chain monte carlo in practice. Chapman and Hall, London, p 486Google Scholar
  19. Gray W, Sheafer J (1991) El Niño and QBO influences on tropical cyclone activity. In: Glantz MH, Katz RW, Nicholls N (eds) Teleconnections linking worldwide climate anomalies. Cambridge University Press, CambridgeGoogle Scholar
  20. Gray WM (1984) Atlantic seasonal hurricane frequency: 1. El Niño and 30-mb Quasi-Biennial Oscillation influences. Mon Weather Rev 112(9):1649–1668CrossRefGoogle Scholar
  21. Hathaway D, Wilson R, Reichmann E (1994) The shape of the sunspot cycle. Sol Phys 151:177–190CrossRefGoogle Scholar
  22. Hodges R, Elsner J (2010) Evidence linking solar variability with US hurricanes. Int J Climatol 31:1897–1907CrossRefGoogle Scholar
  23. Hodges R, Elsner J (2012) The spatial pattern of the sun-hurricane connection across the North Atlantic. ISRN Meteorol 2012:1–9CrossRefGoogle Scholar
  24. Hood L (2003) Thermal response of the tropical tropopause region to solar ultraviolet variations. J Geophys Res 30:2215–2225Google Scholar
  25. Hoyt D, Schatten K (1997) The role of the sun in climate change. Oxford University Press, OxfordGoogle Scholar
  26. Hughes J, Haran M (2012) Dimension reduction and alleviation of confounding for spatial generalized linear mixed models. J R Stat Soc Series B 75:139–159CrossRefGoogle Scholar
  27. Hurrell J, van Loon H (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim Changes 36:301–326CrossRefGoogle Scholar
  28. Jagger T, Elsner J (2006) Climatology models for extreme hurricane winds near the United States. J. Clim. 19:3220–3236CrossRefGoogle Scholar
  29. Jarvinen, B.R., Neumann, C.J., Davis, M.A.S.: A tropical cyclone data tape for the north atlantic basin, 1886–1983: Contents, limitations, and uses. Technical Memo. 22, NOAA NWS NHC (1984)Google Scholar
  30. Können G, Jones P, Kaltofen M, Allan R (1998) Pre-1866 extensions of the Southern Oscillation Index using early Indonesian and Tahitian meteorological readings. J Clim 11:2325–2339CrossRefGoogle Scholar
  31. Labitzke K, Austin J, Butchart N, Knight J, Takahashi M, Nakamoto M, Nagashima T, Haigh J, Williams V (2002) The global signal of the 11-year solar cycle in the stratosphere: observations and models. J Atmospheric Sol Terr Phys 64:203–210CrossRefGoogle Scholar
  32. Landsea C (1993) A climatology of intense (or major) Atlantic hurricanes. Mon Weather Rev 121:1703–1713CrossRefGoogle Scholar
  33. Landsea C, Anderson C, Charles N, Clark G, Dunion J, Partagas J, Hungerford P, Neumann C, Zimmer M (2004) The Atlantic hurricane database re-analysis project: Documentation for the 1851–1910 alterations and additions to the HURDAT database. In: Murnane R, Liu KB (eds) Hurricanes and Typhoons: Past, Present and Future. Columbia University Press, Columbia, pp 177–221Google Scholar
  34. Landsea C, Pielke RW Jr, Mesta-Nuñez A, Knaff J (1999) Atlantic basin hurricanes: indices of climatic changes. Clim Changes 42:89–129CrossRefGoogle Scholar
  35. Liu K, Fearn M (1999) Reconstruction of prehistoric landfall frequencies of catastrophic hurricanes in northwest Florida from lake sediment records. Quat Res 54:238–245CrossRefGoogle Scholar
  36. Mann M, Park J (1994) Global-scale modes of surface temperature variability on interannual to century timescales. J Geophys Res 99:25,819–25,833CrossRefGoogle Scholar
  37. Meldrum C (1872) On a periodicity in the frequency of cyclones in the Indian Ocean south of the equator. Nature 6:357–358CrossRefGoogle Scholar
  38. Neumann, C., Jarvinen, B.R., McAdie, C.J., Hammer, G.R.: Tropical Cyclones of the North Atlantic Ocean, 1871–1999. Historical Climatology Series 6–2, National Environmental Satellite, Data, and Information Service, Asheville, North Carolina (1999)Google Scholar
  39. Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11Google Scholar
  40. Poey A (1873) Sur les rapports entre les taches solaires et les ourages des Antilles de l’Atlantique-nord et de l’Ocean Indien sud. Compt Rend 77:1223–1226Google Scholar
  41. Reich B, Hodges J, Zadnik V (2006) Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models. Biometrics 62:1197–1206CrossRefGoogle Scholar
  42. Ropelewski C, Jones P (1987) An extension of the Tahiti-Darwin Southern Oscillation Index. Mon Weather Rev 115:2161–2165CrossRefGoogle Scholar
  43. Rue H, Martino S (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc B 71:319–392CrossRefGoogle Scholar
  44. Shapiro L, Goldenberg S (1998) Atlantic sea surface temperatures and tropical cyclone formation. J Clim 11:578–590CrossRefGoogle Scholar
  45. Shekhar S, Xiong H (eds) (2008) Encyclopedia of GIS. Springer, New YorkGoogle Scholar
  46. Smith T, Reynolds R, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  47. van Loon H, Meehl G (2012) The Indian summer monsoon during peaks in the 11 year sunspot cycle. Geophys Res Lett 39:L13,701Google Scholar
  48. Vecchi G, Knutson T (2011) Estimating annual numbers of Atlantic hurricanes missing from the HURDAT database (1878–1965) using ship track density. J Clim 24:1736–1746CrossRefGoogle Scholar
  49. Visher S (1924) Sunspots and the frequency of tropical cyclones. Am J Sci 8:312–316CrossRefGoogle Scholar
  50. Weiss N (2007) Sunspot structure and dynamics. In: Baker D (ed) Solar dynamics and its effects on the heliosphere and Earth. Springer, New York, pp 13–22CrossRefGoogle Scholar
  51. White W, Lean J, Cayan D, Dettinger M (1997) Response of global upper ocean temperature to changing solar irradiance. J Geophys Res 102:3255–3266CrossRefGoogle Scholar
  52. Wikle C, Anderson C (2003) Climatological analysis of tornado counts using a hierarchical Bayesian spatiotemporal model. J Geophys Res 108:9005Google Scholar
  53. Wikle C, Berliner L, Cressie N (1998) Hierarchical Bayesian space-time models. Environ Ecol Stat 5:117–154CrossRefGoogle Scholar
  54. Willett H (1951) Extrapolation of sunspot-climate relationships. J Meteor 8:1–6CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Robert E. Hodges
    • 1
  • Thomas H. Jagger
    • 1
  • James B. Elsner
    • 1
  1. 1.Department of GeographyFlorida State UniversityTallahasseeUSA

Personalised recommendations