Advertisement

Natural Hazards

, Volume 72, Issue 2, pp 455–479 | Cite as

Hybrid loss exceedance curve (HLEC) for disaster risk assessment

  • C. A. Velásquez
  • O. D. Cardona
  • M. G. Mora
  • L. E. Yamin
  • M. L. CarreñoEmail author
  • A. H. Barbat
Original Paper

Abstract

Taken into account that the natural hazard risk is a contingent liability and, therefore, a sovereign risk for national governments, it is important to assess properly the potential losses to design a suitable risk reduction, retention and transfer strategy. In this article, a disaster risk assessment methodology is proposed based on two approaches: on the one hand, the empiric estimation of losses, using information available from local disaster databases, allowing estimating losses due to small-scale events and, on the other hand, probabilistic evaluations to estimate losses for greater or even catastrophic events, for which information usually is not available due to the lack of historical data. A “hybrid” loss exceedance curve is thus determined, which combines the results of these two approaches and represents the disaster risk in a proper and complete way. This curve merges two components: the corresponding to small and moderate losses, calculated using an inductive and retrospective analysis, and the corresponding to extreme losses, calculated using a deductive and prospective analysis. Applications of this risk assessment technique are given in this article for eleven countries.

Keywords

Disaster risk Loss exceedance curve Hybrid loss exceedance curve 

Notes

Acknowledgments

This work has been sponsored by UNISDR and has been used as a background paper in the GAR report (UNISDR 2011a, 2013). We want to thank the following local institutions for their help and collaboration: Colombia (INGENIAR, ITEC) and Nepal (NSET). We also thank the Florida International University for their support in the PhD studies of two of the authors. This work has been also partially sponsored by the European Commission (project DESURBS-FP7-2011-261652). The authors are also grateful for the support of the Ministry of Education and Science of Spain, project “Enfoque integral y probabilista para la evaluación del riesgo sísmico en España, CoPASRE” (CGL2011-29063).

References

  1. Barbat AH, Pujades LG, Lantada N, Moreno R (2008) Seismic damage evaluation in urban areas using the capacity spectrum method: application to Barcelona. Soil Dyn Earthq Eng 28(10–11):851–865CrossRefGoogle Scholar
  2. Barbat AH, Carreño ML, Pujades LG, Lantada N, Cardona OD, Marulanda MC (2010) Seismic vulnerability and risk evaluation methods for urban areas. A review with application to a pilot area. Struct Infrastruct Eng 6(1):17–38CrossRefGoogle Scholar
  3. Barbat AH, Carreño ML, Cardona OD, Marulanda MC (2011) Evaluación holística del riesgo sísmico en zonas urbanas. Revista internacional de métodos numéricos para cálculo y diseño en ingeniería, 27(1):3–27Google Scholar
  4. Cardona OD (1985) Hazard, vulnerability analysis and risk assessment. Institute of Earthquake Engineering and Engineering Seismology IZIIS, SkopjeGoogle Scholar
  5. Cardona OD (2004) The need for rethinking the concepts of vulnerability and risk from a holistic perspective: a necessary review and criticism for effective risk management. In: Bankoff GF, Hilhorst D (eds) Mapping vulnerability: disasters, development and people. Earthscan, London, pp 37–51Google Scholar
  6. Cardona OD, Ordaz MG, Yamin LE, Marulanda MC, Barbat AH (2008a) Earthquake loss assessment for integrated disaster risk management. J Earthq Eng 12:48–59CrossRefGoogle Scholar
  7. Cardona OD, Ordaz MG, Marulanda MC, Barbat AH (2008b) Estimation of probabilistic seismic losses and the public economic resilience—an approach for a macroeconomic impact evaluation. J Earthq Eng 12:60–70CrossRefGoogle Scholar
  8. Cardona OD, Ordaz MG, Marulanda MC, Carreño ML, Barbat AH (2010a) Disaster risk from a macroeconomic perspective: a metric for fiscal vulnerability evaluation. Disasters 34(4):1064–1083CrossRefGoogle Scholar
  9. Cardona OD, Ordaz MG, Reinoso E, Yamin LE, Barbat AH (2010b) Comprehensive approach for probabilistic risk assessment (CAPRA): international initiative for disaster risk management effectiveness. Presented at the 14th European conference on earthquake engineering, Ohrid, MacedoniaGoogle Scholar
  10. Cardona OD, Marulanda MC, Velásquez CA, Barbat AH (2012a) Earthquake loss assessment for evaluation of the sovereign risk and financial sustainability of countries: economic impacts, fiscal responsibilities and contingent liabilities. Presented at the 15th World conference on earthquake engineering, Lisbon, PortugalGoogle Scholar
  11. Cardona OD, Ordaz MG, Reinoso E, Yamin LE, Barbat AH (2012b) Comprehensive approach for probabilistic risk assessment (CAPRA): International initiative for disaster risk management effectiveness. Presented at the 15th World conference on earthquake engineering, Lisbon, PortugalGoogle Scholar
  12. Carreño ML, Cardona OD, Barbat AH (2006) Urban seismic risk evaluation: a holistic approach. Nat Hazards 40(1):137–172CrossRefGoogle Scholar
  13. Carreño ML, Cardona OD, Barbat AH (2007) A disaster risk management performance index. Nat Hazards 41(1):1–20CrossRefGoogle Scholar
  14. CIMNE, EAI, INGENIAR, ITEC (2013a) Probabilistic modeling of natural risks at the global level: global risk model. Background paper prepared for the 2013 global assessment report on disaster risk reduction, UNISDR, Geneva, Switzerland. http://www.preventionweb.net/gar
  15. CIMNE, EAI, INGENIAR, ITEC (2013b) Probabilistic modelling of natural risks at the global level: the hybrid loss exceedance curve. Background paper prepared for the 2013 global assessment report on disaster risk reduction, UNISDR, Geneva, Switzerland. http://www.preventionweb.net/gar
  16. ECLAC (2003) Manual para la estimación de los efectos socio-económicos de los desastres naturales (report LC/MEX/G.5). CEPAL, Banco Mundial, México DFGoogle Scholar
  17. ECLAC (2012) Valoración de daños y pérdidas: Ola invernal en Colombia 2010–2011. ECLAC, IDB, BogotáGoogle Scholar
  18. EM-DAT (n.d.) The OFDA/CRED international disaster database—www.emdat.net. Université catholique de Louvain, Brussels, Belgium. http://emdat.be/. Last visit the 2nd of February 2012
  19. ERN-AL (2010) CAPRA, Compressive approach for probabilistic risk assessment. World Bank, InterAmerican Development Bank. Retrieve from www.ecapra.org
  20. ERN-AL (2011) Probabilistic modeling of disaster risk at global level: development of a methodology and implementation of case studies. Phase 1A: Colombia, México and Nepal. Background paper prepared for the 2011 global assessment report on disaster risk reduction, UNISDR, Geneva, SwitzerlandGoogle Scholar
  21. FEMA (2006) Multi-hazard loss estimation methodology, HAZUS-MH MR2 technical manual, prepared for the Federal Emergency Management Agency, Federal Emergency Management Agency and National Institute of Building Sciences, Washington DC, USAGoogle Scholar
  22. Lagomarsino S, Giovinazzi S (2006) Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull Earthq Eng 4(4):415–443CrossRefGoogle Scholar
  23. Lantada N, Pujades LG, Barbat AH (2009a) Vulnerability index and capacity spectrum based methods for urban seismic risk evaluation. A comparison. Nat Hazards 51(3):501–524CrossRefGoogle Scholar
  24. Lantada N, Irizarry J, Barbat AH, Goula X, Roca A, Susagna T, Pujades LG (2009b) Seismic hazard and risk scenarios for Barcelona, Spain, using the Risk-UE vulnerability index method. Bull Earthq Eng 8(2):201–229Google Scholar
  25. Marulanda M (2013) Modelación probabilista de pérdidas económicas por sismo para la estimación de la vulnerabilidad fiscal del Estado y la gestión financiera del riesgo soberano, Tesis Doctoral, Barcelona, España: Universidad Politécnica de Cataluña, UPCGoogle Scholar
  26. Marulanda MC, Cardona OD, Barbat AH (2008) La gestión financiera del riesgo desde la perspectiva de los desastres: Evaluación de la exposición fiscal del estado y alternativas de instrumentos financieros de retención y transferencia del riesgo. CIMNE IS-61. Centro Internacional de Métodos Numéricos en Ingeniería, Barcelona, EspañaGoogle Scholar
  27. Marulanda MC, Cardona OD, Barbat AH (2010) Revealing the socioeconomic impact of small disasters in Colombia using the DesInventar database. Disasters 34(2):552–570CrossRefGoogle Scholar
  28. Marulanda MC, Carreño ML, Cardona OD, Ordaz MG, Barbat AH (2014) Probabilistic earthquake risk assessment using CAPRA: application to the city of Barcelona, Spain. Nat Hazards. doi: 10.1007/s11069-013-0685-z
  29. OSSO (n.d.) Desinventar.org—DesInventar Project. Corporación OSSO, Cali, Colombia. http://desinventar.org/en/
  30. RISK-UE (2001–2004) An advanced approach to earthquake risk scenarios, with applications to different European cities. http://www.risk-ue.net
  31. UNDP (2004) Reducing disaster risk: a challenge for development. United Nations Development Programme, Bureau for Crisis Prevention and Recovery, GenevaGoogle Scholar
  32. UNDRO (1980) Natural disasters and vulnerability analysis, report of experts group meeting, UNDRO, GenevaGoogle Scholar
  33. UNISDR (2009) Global assessment report on disaster risk reduction: risk and poverty in a changing climate. United Nations International Strategy for Disaster Reduction, GenevaGoogle Scholar
  34. UNISDR (2011a) GAR2011: global assessment report on disaster risk reduction: revealing risk, redefining development. United Nations International Strategy for Disaster Reduction, GenevaGoogle Scholar
  35. UNISDR (2011b) Desinventar.net database: Nepal disaster inventory. United Nations International Strategy for Disaster Reduction, GenevaGoogle Scholar
  36. UNISDR (2013) GAR2013: global assessment report on disaster risk reduction: from shared risk to shared value; the business case for disaster risk reduction. United Nations International Strategy for Disaster Reduction, GenevaGoogle Scholar
  37. Vargas YF, Pujades LG, Barbat AH (2013a) Evaluación probabilista de la capacidad, fragilidad y daño sísmico en edificios de hormigón armado. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 29(2):63–78CrossRefGoogle Scholar
  38. Vargas YF, Pujades LG, Barbat AH, Hurtado JE (2013b) Capacity, fragility and damage in reinforced concrete buildings: a probabilistic approach. Bull Earthq Eng. doi: 10.1007/s10518-013-9468-x Google Scholar
  39. Vargas YF, Barbat AH, Pujades LG, Hurtado JE (2013c) “Probabilistic seismic risk evaluation of reinforced concrete buildings”, structures and buildings. In: Proceedings of the institution of civil engineering, 2013.  10.1680/stbu.12.00031
  40. Velásquez CA, Cardona OD, Yamin LE, Mora MG, Barbat AH (2011) Curva de excedencia de pérdidas híbrida para la representación del riesgo. Cuarto Congreso Nacional de Ingeniería Sísmica, GranadaGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • C. A. Velásquez
    • 1
  • O. D. Cardona
    • 2
  • M. G. Mora
    • 1
  • L. E. Yamin
    • 1
  • M. L. Carreño
    • 3
    Email author
  • A. H. Barbat
    • 3
  1. 1.Universitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Universidad Nacional de ColombiaManizalesColombia
  3. 3.Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations