Skip to main content

Snow gliding and glide avalanches: a review

Abstract

Snow gliding is a downhill motion of snow on the ground; it is able to affect afforestation (uprooting of plants) and to cause soil erosion. Once the glide motion turns into an avalanche movement, the process is called a glide avalanche. Winters with continuing snow gliding and a high activity of glide avalanches might be called ‘glide winters’. The most recent ‘glide winter’ in the European Alps was 2011/2012. Glide avalanches have the ability to cause damage to buildings and infrastructure. This review describes the progress in research, from basic snow glide measurements via the design of sophisticated models through to comprehensive investigations concerning glide avalanche formation. However, despite the great progress made in this field of research, there are still some unsolved problems, such as the influence of soil conditions on snow gliding or the prediction of glide avalanches.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Akitaya E (1975) Studies of the behavior of snow cover on slope. V. Glide motion of snow and formation of crack. Low Temp Sci 33:103–108

    Google Scholar 

  2. Akitaya E (1988) Behavior of a snow cover after crack formation on mountain slope. In ISSW 1988, international snow science workshop, Whistler; British Columbia, pp 179–186

  3. Akitaya E, Endo Y (1984) Studies of the behavior of a snow cover on slope XVIII. Glide motion of snow and formation of crack in melting season. Low Temp Sci 43:49–57

    Google Scholar 

  4. Ammer U, Pröbstl U, Mössmer EM (1986) Erosion auf Almen Ein Beitrag zu aktuellen Fragen des Bodenschutzes. Forstw Cbl 105:48–59

    Article  Google Scholar 

  5. Bartelt P, Feistl T, Bühler Y, Buser O (2012a) Overcoming the stauchwall: viscoelastic stress redistribution and the start of full-depth gliding snow avalanches. Geophys. Res, Let 39

    Google Scholar 

  6. Bartelt P, Pielmeier C, Margreth S, Harvey S, Stucki T (2012b) The understimated role of the Stauchwall in Full-Depth Avalanche Release. In ISSW 2012, international snow science workshop, Anchorage, Alaska, pp 127–133

  7. Brown CB, Evans RJ, McClung D (1972) Incorporation of glide and creep measurements in snow slab mechanics. Advances in North American avalanche technology 1972 symposium, pp 7–13

  8. Bucher E (1948) Beitrag zu den theoretischen Grundlagen des Lawinenverbaus. Beiträge zur Geologie der Schweiz—Geotechnische Serie—Hydrologie Lieferung 6, Kümmerly & Frey, Bern

  9. Ceaglio E, Freppaz M, Filippa G, Ferraris S, Zanini E, Segor V (2012) A characterization of snow gliding and potential predisposing factors in a full-depth slab avalanche release area (Valle D’aosta, NW Italian Alps). In ISSW 2012, international snow science workshop, Anchorage, Alaska, pp 561–568

  10. Clarke J, McClung D (1999) Full-depth avalanche occurrences caused by snow gliding, Coquihalla, British Columbia, Canada. J Glaciol 45(151):539–546

    Google Scholar 

  11. Coaz J (1881) Die Lawinen der Schweizeralpen. J Dalp‘sche Buch—und Kunsthandlung, Bern

  12. de Quervain M (1966) Problems of Avalanche Research, IAHS-Publ. No. 69, pp 15–22

  13. EISLF—Eidg. Institut für Schnee und Lawinenforschung (ed) (1967) Schnee und Lawinen in den Schweizer Alpen Winter 1965/66, Winterbericht des Eidg. Institutes für Schnee und Lawinenforschung Davos, p 136

  14. EISLF—Eidg. Institut für Schnee und Lawinenforschung (ed) (1976) Schnee und Lawinen in den Schweizer Alpen Winter 1974/75, Winterbericht des Eidg. Institutes für Schnee und Lawinenforschung Davos, p 231

  15. Eidg. Inspektion für Forstwesen (ed) (1961) Lawinenverbau im Anbruchgebiet. Mitteilungen des Eidgenössischen Institutes für Schnee-und Lawinenforschung, 15:60

  16. Endo Y (1984) Glide processes of a snow cover as a release mechanism of an avalanche on a slope covered with bamboo bushes. Contr Inst Low Temp Sci 32:39–68

    Google Scholar 

  17. Endo Y (1985) Release mechanism of an avalanche on a slope covered with bamboo bushes. Ann Glaciol 6:256–257

    Google Scholar 

  18. Endo Y, Akitaya E (1978) Glide mechanism of a snow cover on a slope covered with bamboo-bushes. Low Temp Sci 35:91–104

    Google Scholar 

  19. Etter H, Zweifel B, Dürr L (2011) Schnee und Lawinen in den Schweizer Alpen.Hydrologisches Jahr 2007/08. Davos, WSL-Institut für Schnee-und Lawinenforschung SLF, 93 S

  20. Eugster HP (1938) Schneestudien im Oberwallis und ihre Anwendung auf den Lawinenverbau. Beiträge zur Geologie der Schweiz—Geotechnische Serie—Hydrologie Lieferung 2, Kümmerly & Frey, Bern

  21. Fankhauser F (1918) Die Notwendigkeit einer Umgestaltung unseres Aufforstungsverfahrens im Gebirge. Schweiz Zeitschrift für Forstwesen 69:25–34

    Google Scholar 

  22. Fankhauser F (1928) Über Lawinen und Lawinenverbau. Beiheft Nr. 2 zur Schweiz. Zeitschrift für Forstwesen, pp 13–46

  23. Feick S, Brunner S, Mitterer C, Schweizer J (2011) Automated detection and analysis of gliding snow, geophysical research abstracts, 13:EGU2011–13923

  24. Feick S, Mitterer C, Dreier L, Harvey S, Schweizer J (2012) Automated detection and monitoring of glide-snow events using satellite based optical remote sensing and terrestrial photography. In ISSW 2012, international snow science workshop, Anchorage, Alaska, pp 603–609

  25. Flaig W (1935) Lawinen. Brockhaus, Leipzig, p 173

    Google Scholar 

  26. Frutiger H, Kuster J (1967) Über das Gleiten und Kriechen der Schneedecke in Lawinenverbauungen. Schweiz Zeitschrift für Forstwesen 10:633–643

    Google Scholar 

  27. Haefeli R (1939) Schneemechanik mit Hinweisen auf die Erdbaumechanik. In: Der Schnee und seine Metamorphose. Beiträge zur Geologie der Schweiz—Geotechnische Serie—Hydrologie, Lieferung 3, Kümmerly und Frey, Bern, pp 65–241

  28. Haefeli R (1948) Schnee, Lawinen, Firn und Gletscher. In: Bendel L (ed) Ingenieur-Geologie, 2. Band. Springer, Wien, pp 663–735

  29. Haefeli R (1963) Stress transformations, tensile strengths and rupture processes of the snow cover. In: Kingery WD (ed) Ice and snow. MIT Press, Separatdruck, pp 560–575

    Google Scholar 

  30. Hendrikx J, Peitzsch E, Fagre D (2010) A practitioner’s tool for assessing glide crack activity. In ISSW 2010, international snow science workshop, Squaw Valley, California, pp 395–396

  31. Hendrikx J, Peitzsch E, Fagre D (2012) Time-lapse photography as an approach to understanding Glide avalanche activity. In ISSW 2012, international snow science workshop, Anchorage, Alaska, pp 872–877

  32. Hess E (1936) Erfahrungen über Lawinenverbauungen. Eidg. Department des Innern, Bern, p 123

    Google Scholar 

  33. Höller P (1997) Das Schnegleiten auf verschieden bewirtschafteten Flächen nahe der Waldgrenze. Centralblatt f d ges Forstw 114:97–108

    Google Scholar 

  34. Höller P (2001) Snow gliding and avalanches in a south-facing larch stand. In: Soil-vegetation—atmosphere schemes and large-scale hydrological models (proceeding of Maastricht symposium, July 2001). IAHS Publ. No. 270, pp 355–358

  35. Höller P (2012) Zur Bestimmung schneegleitgefährdeter Standorte und Planung von Gleitschutzmaßnahmen und Hochlagenaufforstungen. Allg Forst Jagdztg 183:94–100

    Google Scholar 

  36. Höller P (2013) Snow gliding on a south-facing slope covered with larch trees. Ann Forest Sci. doi:10.1007/s13595-013-0333-5

  37. Höller P, Bilek H (2012) Lawinenunfälle in Österreich—Winter 2011/2012. Sicherheit im Bergland—Jahrbuch 2012. Österreichisches Kuratorium für alpine Sicherheit, pp 156–185

  38. Höller P, Fromm R, Leitinger G (2009) Snow forces on forest plants due to creep and glide. For Ecol Manage 257:546–552

    Article  Google Scholar 

  39. In der Gand H (1954) Beitrag zum Problem des Gleitens der Schneedecke auf dem Untergrund. Winterb des EISLF 17:103–117

    Google Scholar 

  40. In der Gand H (1956) Spezielle Schnee- und Lawinenuntersuchungen im Parsenngebiet. Lawinen und Gleitschnee. Winterb des EISLF 19:93–101

  41. In der Gand H (1957) Ergebnisse der Gleitmessung. Winterb des EISLF 20:111–114

    Google Scholar 

  42. In der Gand H (1959) Ergebnisse der Gleitmessung. Winterb des EISLF 12:122–126

    Google Scholar 

  43. In der Gand H (1968a) Neue Erkenntnisse über das Schneegleiten. Schweiz Bauztg 86(31):557–661

    Google Scholar 

  44. In der Gand H (1968b) Aufforstungsversuche an einem Gleitschneehang. Mitteilungen der Schweizer Anstalt für das Forstliche Versuchswesen 44:233–326

    Google Scholar 

  45. In der Gand H, Zupancic M (1966) Snow Gliding and Avalanches, IAHS-Publ. No. 69, pp 230–242

  46. Jones A (2004) Review of glide processes and glide avalanche release. Avalanche News 69:53–60

    Google Scholar 

  47. Lackinger B (1981) Akustische und seismische Messungen in der Schneedecke zur Frühwarnung vor Lawinen-Abbrüchen. Sicherheit im Bergland—Jahrbuch 1981. Österreichisches Kuratorium für alpine Sicherheit, pp 205–213

  48. Lackinger B (1984) Schnee—und Lawinenforschung am Institut für Bodenmechanik, Felsmechanik und Grundbau. Mitteilungen der Forstlichen Bundesversuchsanstalt 153:155–173

    Google Scholar 

  49. Lackinger B (1986) Lawinenmessfelder und die Lawinenmessstation auf der Innsbrucker Nordkette. Z Gletscherk Glazialgeol 22(1):79–87

    Google Scholar 

  50. Lackinger B (1987) Stability and fracture of the snow pack for glide avalanches. IAHS-Publ. 162, pp 229–240

  51. Lackinger B (1988) Zum Problem der Gleitschneelawine. Proceeding of interpraevent 1988, Graz, Band 3, S. pp 205–226

  52. Leitinger G, Höller P, Tasser E, Walde J, Tappeiner U (2008) Development and validation of a spatial snow-glide model. Ecol Model 211:363–374

    Article  Google Scholar 

  53. Margreth S (2007) Defense structures in avalanche starting zones. Technical guideline as an aid to enforcement. Environment in Practice no. 0704. Federal Office for the Environment, Bern; WSL Swiss Federal Institute for Snow and Avalanche Research SLF, Davos, p 134

  54. McClung D (1975) Creep and the snow—earth interface condition. In: Snow mechanics (proceeding of Grindelwald symposium, April 1974), IAHS Publ. No. 114, pp 236–248

  55. McClung D (1980) Creep and glide processes in mountain snowpacks. Nat. Hydr. Research Inst. Canada, Paper No. 6, p 66

  56. McClung D (1981) A physical theory of snow gliding. Can Geotech J 18:86–94

    Article  Google Scholar 

  57. McClung D (1987) Mechanics of snow slab failure from a geotechnical perspective. international association of hydrological sciences publication 162 (Symposium at Davos 1986—avalanche formation, movement and effects), pp 475–508

  58. McClung D, Clarke GKC (1987) The effects of free water on snow gliding. J Geophys Res 92 (B7):6301–6309

    Google Scholar 

  59. McClung D, Schaerer P (2006) The avalanche handbook. The Mountaineers Books, Seattle, p 342

    Google Scholar 

  60. McClung D, Walker S, Golley W (1994) Characteristics of snow gliding on rock. Ann Glaciol 19:97–103

    Google Scholar 

  61. Merwald I (1985) Lawinenereignisse und Witterungsablauf in Österreich, Winter1974/75, 1975/76, 1976/77. FBVA-Berichte 10

  62. Mitterer C, Schweizer J (2012) Towards a better understanding of glide-snow avalanche formation. In ISSW 2012, international snow science workshop, Anchorage, Alaska, pp 610–616

  63. Newesely C, Tasser E, Spadinger P, Cernusca A (2000) Effects of land-use changes on snow gliding processes in alpine ecosystems. Basic Appl Ecol 1(1):61–67

    Article  Google Scholar 

  64. Nohguchi Y (1989) A mathematical model for instability in snow gliding motion. Ann Glaciol 13:211–214

    Google Scholar 

  65. Nye JF (1969) A calculation on the sliding of ice over a wavy surface using a Newtonian viscous approximation. Proc R Soc A 311:445–467

    Article  Google Scholar 

  66. Paulcke W (1938) Praktische Schnee- und Lawinenkunde. Springer, Berlin, p 218

    Book  Google Scholar 

  67. Peitzsch E, Hendrikx J, Fagre D, Reardon B (2010) Characterizing wet slab and glide avalanche occurrence along the going-to-the-sun road corridor, glacier national park, Montana. In ISSW 2010, international snow science workshop, Squaw Valley, California, pp 651–659

  68. Peitzsch E, Hendrikx J, Fagre D, Reardon B (2012) Examining spring wet slab and glide avalanche occurrence along the Going-to-the-Sun Road corridor, Glacier national park, Montana, USA. Cold Reg Sci Technol 78:73–81

    Article  Google Scholar 

  69. Pielmeier C, Stucki T, Aebi M, Bründl M, Etter HJ, Rhyner J, Wiesinger T (2004) Schnee und Lawinen in den Schweizer Alpen. Hydrologisches Jahr 2002/03. WSL-Institut für Schnee-und Lawinenforschung SLF, Davos, p 117

    Google Scholar 

  70. Pielmeier C, Darms G, Techel F (2012) Wetter, Schneedecke und Lawinengefahr in den Schweizer Alpen—Hydrologisches Jahr 2011/12. WSL-Institut für Schnee-und Lawinenforschung SLF, Davos, p 32

    Google Scholar 

  71. Reardon B, Fagre D, Dundas M, Lundy C (2006) Natural Glide Slab Avalanches, Glacier National Park, USA: a unique hazard and forecasting challenge. In ISSW 2006, international snow science workshop, Telluride, Colorado, pp 778–785

  72. Rice B, Howlett D, Decker R (1996) Preliminary investigations of glide/creep motion sensors in Alta, Utah. In ISSW’96, international snow science workshop, Banff, pp 189–194

  73. Salm B (1977) Snow forces. J Glaciol 19(81):67–100

    Google Scholar 

  74. Salm B (1979) Snow forces on forest plants. Proc IUFRO Semin Mt Forests Avalanches Davos 1978:157–181

    Google Scholar 

  75. Sampl P, Granig M (2009) Avalanche simulation with SAMOS-AT. In ISSW 2009, international snow science workshop, Davos, pp 519–523

  76. Sampl P, Zwinger P (2004) Avalanche simulation with SAMOS. Ann Glaciol 38:393–398

    Article  Google Scholar 

  77. Seligman G (1936) Snow structure and ski fields. Reprinted in 1980 by the International Glaciological Society, Cambridge, p 555

  78. Shoda M (1967) Aerial Observations and Thin Section Studies on Avalanches. Proc Conf Phys Snow Ice Sapporo Jpn 1967:1137–1149

    Google Scholar 

  79. Simenhois R, Birkeland K (2010) Meteorological and environmental observations from three glide avalanche cycles and the resulting hazard management technique. In ISSW 2010, international snow science workshop, Squaw Valley, California, pp 846–853

  80. Stimberis J, Rubin C (2004) Glide avalanche detection on a smooth rock slope; Snowqualmie Pass, Washington. In ISSW 2004, international snow science workshop, Jackson Hole, Wyoming, pp 608–610

  81. Stimberis J, Rubin C (2008) Rockface glide avalanche detection. In ISSW 2008, international snow science workshop, Whisler, pp 698–700

  82. Stimberis J, Rubin C (2009) Glide avalanche response to an extreme rain-on-snow event, Snowqualmie Pass, Washington, USA. In ISSW 2009, international snow science workshop, Davos, pp 301–305

  83. Stimberis J, Rubin C (2011) Glide avalanche response to an extreme rain-on-snow event, Snowqualmie Pass, Washington, USA. J Glaciol 57:468–474

    Article  Google Scholar 

  84. Unesco (ed) (1981) Avalanche Atlas, Paris, p 265

  85. van Herwijnen A, Simenhois R (2012) Monitoring glide avalanches using time-lapse photography. In ISSW 2012, international snow science workshop, Anchorage, Alaska, pp 899–903

  86. Voight B (1988) A method for prediction of volcanic eruptions. Nature 332:125–130

    Article  Google Scholar 

  87. Wilson A, Statham G, Bilak R, Allen B (1996) Glide avalanche forecasting. In ISSW’96, international snow science workshop, Banff, pp 200–202

  88. Yamada Y (1977) On a new method for snow gliding measurement—gear-type glide-meter. Rep NRCDP 21:89–102

    Google Scholar 

  89. Yamada Y, Nohguchi Y, Ikarashi (1991) Snow avalanche release due to instability of snow Glide motion. In: Japan-US Workshop on Snow, Avalanche, Landslide, Debris Flow Prediction and Control, Sept 30–Oct 2 1991, Tsukuba, Japan, Proceeding of Japanese Science and Technology Agency, pp 105–114

  90. Zdarsky M (1929) Beiträge zur Lawinenkunde. A-B-Z Druck und Verlagsanstalt, Wien, p 127

    Google Scholar 

Download references

Acknowledgments

I am very grateful to R. Fromm for reading this paper and for the valuable comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Höller.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Höller, P. Snow gliding and glide avalanches: a review. Nat Hazards 71, 1259–1288 (2014). https://doi.org/10.1007/s11069-013-0963-9

Download citation

Keywords

  • Snow gliding
  • Glide avalanches
  • Avalanche control