Skip to main content

Advertisement

Log in

Application of geomorphologic knowledge for erosion hazard mapping

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

An erosion hazard map was elaborated using geomorphologic and lithological information; this was the base to characterize the erodibility of the territory. The aim of the proposed methodology is to define the areas where more detailed studies are necessary (e.g., to estimate rates of soil erosion, mitigation measurements, land use) to prevent future problems. Field work and remote sensing data (study of historical aerial photographs and satellite images) were used to understand the geomorphologic evolution and the current processes taking place in an area; this information was used to group the units according to its lithology, dynamic and slope inclination. The map was processed using the geographical information system and categorized in zones of very high, high, moderate, low and null fluvial erosion hazards. The map covers the Metropolitan Area of San Salvador, which is experiencing serious problems of mass wasting processes, collapse and settlements of foundations. Most affected areas belong to the Tierra Blanca Joven tephras which are unsaturated and cover most of the surface; nowadays, the urban projects and infrastructure resting in this material are suffering from extensive damage. The geotechnical information on the tephras shows a decrease in strength and collapsible behavior when saturated. Due to this, the use of Quickdraw tensiometers (suction) and TMS3 (soil moisture content) is proposed for monitoring. The methodology of erosion hazard mapping correlates well with mass wasting reported in the studied area, and for this reason, it could be a good way to protect the natural resources and improve the land use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  • Avalos J, Castro R (2010) Caracterización geológica y geotécnica de la unidad “G” de Tierra Blanca Joven. Thesis, Universidad Centroamericana José Simeón Cañas

  • Behera P, Durga K, Das K (2005) Soil erosion modeling using MMF model. A remote sensing and GIS perspective. J Indian Soc Remote Sens 3(1):165–176

    Article  Google Scholar 

  • Bet H, DeRose R (1999) Digital elevation models as a tool for monitoring and measuring gully erosion. Int J Appl Earth Obs Geoinf 1(2):91–101

    Article  Google Scholar 

  • Bommer J, Salazar W, Samayoa R (1998) Riesgo sísmico en la región metropolitana de San Salvador. PRISMA. http://www.prisma.org.sv/uploads/media/riesgo.pdf. Accessed 23 January 2013

  • Bosse H, Lorenz W, Merino A, Mihm A, Rode K, Schmidt-Thomé M, Wiesemann G, Weber H (1978) Mapa geológico de El Salvador Escala 1:100 000. CNR, San Salvador

    Google Scholar 

  • Bouziz M, Wijaya A, Gloaguen R (2011) Remote gully erosion mapping using ASTER Data and geomorphologic analysis in the main Ethiopian Rift. Geo-spatal Inf Sci 14(4):246–254

    Article  Google Scholar 

  • Charlton R (2007) Fundamentals of fluvial geomorphology. Routledge, London

    Book  Google Scholar 

  • Chavez J, Hernandez W, Kopecky L (2012a) Problemática y conocimiento actual de las tefras Tierra Blanca Joven en el Área Metropolitana de San Salvador, El Salvador. Rev Geol Amér Central 47:117–132

    Google Scholar 

  • Chavez J, Valenta J, Schröfel J, Hernandez W, Šebesta J (2012b) Engineering geology mapping in the southern part of the metropolitan area of San Salvador. Rev Geol Amér Central 46:161–178

    Google Scholar 

  • Chavez J, Šebesta J, Kopecky L, Lopez R, Landaverde J (2013) Unsaturated volcanic tephra and its effect for soil movement in El Salvador. Earth Sci. doi:10.11648/j.earth.20130202.15

    Google Scholar 

  • Conforti M, Aucelli P, Robustelli G, Scarciglia F (2011) Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Nat Hazards 56:881–898

    Article  Google Scholar 

  • Gonzalez L, Romano L, Salamanca L (2004) Risk and disasters in El Salvador: economic, environmental, and social aspects. Geol Soc Am Spec Pap 375:461–470

    Google Scholar 

  • Hernandez W (2004) Características geotécnicas y vulcanológicas de las tefras de Tierra Blanca Joven, de Ilopango, El Salvador. Thesis, Universidad Politécnica de El Salvador

  • Houston S, Houston W (1997) Collapsible soil engineering. In: Houston S, Fredlund D (eds) Unsaturated soil engineering practice. American Society of Civil Engineers, New York, pp 170–199

    Google Scholar 

  • James L, Hodgson M, Ghoshal S, Latiolais M (2012) Geomorphic change detection using historic maps and DEM differencing: the temporal dimension of geospatial analysis. Geomorphology 137:181–198

    Article  Google Scholar 

  • Kim J, Saunders P, Finn J (2005) Rapid assessment of soil erosion in the Rio Lempa basin, Central America, using the Universal Soil Loss Equation and Geographic Information Systems (USLE). Environ Manage 36:872–885

    Article  Google Scholar 

  • Le Bissonnais Y, Montier C, Jamagne M, Daroussin J, King D (2001) Mapping erosion risk for cultivated soil in France. Catena 46(2):207–220

    Google Scholar 

  • Lee S (2004) Soil erosion assessment and its verification using the universal soil loss equation and geographic information system: a case study at Boun, Korea. Environ Geol 45:457–465

    Article  Google Scholar 

  • Leh M, Bajwa S, Chaubey I (2011) Impact of land use change on erosion risk: an integrated remote sensing, geographic information system and modeling methodology. Land Degrad Dev. doi:10.1002/ldr.1137

    Google Scholar 

  • Lexa J, Šebesta J, Chávez J, Hernandez W, Pécskay Z (2011) Geology and volcanic evolution in the southern part of the San Salvador Metropolitan Area. J Geosci 56:105–140

    Google Scholar 

  • Lomnitz C, Schulz R (1966) The San Salvador earthquake of May 3, 1965. Bull Seismol Soc Am 56(2):561–575

    Google Scholar 

  • Malik I (2008) Dating of small gully formation and establishing erosion rates in old gullies under forest by means of anatomical changes in exposed tree roots (Southern Poland). Geomorphology 93:421–436

    Article  Google Scholar 

  • Manyatsi A, Ntshangase N (2008) Mapping of soil erosion using remotely sensed data in Zombodze South, Swaziland. Phys Chem Earth 33:800–806

    Article  Google Scholar 

  • Martinez–Fernandez L, Martinez-Nuñez M (2011) An empirical approach to estimate soil erosion risk in Spain. Sci Total Environ 409:3114–3123

    Article  Google Scholar 

  • Molina B, Pérez G, Vásquez M (2009) Caracterización geotécnica de las tefras Tierra Blanca Joven: unidad “G” en la zona proximal y obras de protección. Thesis Universidad Centroamericana José Simeón Cañas

  • Ng C, Menzies B (2007) Advanced unsaturated soil mechanic and engineering. Taylor and Francis, United Kingdom

    Google Scholar 

  • Nigel R, Rughoopth S (2010) Mapping of monthly soil erosion risk of mainland Mauritius and its aggregation with delineated basins. Geomorphology 114:101–114

    Article  Google Scholar 

  • Perroy R, Bookhagen B, Asner G, Chadwick O (2010) Comparison of gully erosion estimates using airborne and ground-based LIDAR on Santa Cruz Island, California. Geomorphology 118:288–300

    Article  Google Scholar 

  • Renscheler C, Harbor J (2002) Soil erosion assessment tools from point to regional scales-the role of geomorphologists in land management research and implementation. Geomorphology 47:189–209

    Article  Google Scholar 

  • Rolo R, Bomer J, Houghton B, Vallance J, Berdousis W, Mavrommati P, Murphy W (2004) Geologic and engineering characterization of Tierra Blanca pyroclastic ash deposits. Geol Soc Am Spec Pap 375:55–67

    Google Scholar 

  • Romero E, Simms P (2008) Microstructure investigation in unsaturated soils: a review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy, indirect measurement of suction. Geotech Geol Eng 26(6):705–727

    Article  Google Scholar 

  • Toy T, Foster G, Renard K (2002) Soil erosion: processes, prediction, measurement, and control. Wiley, New York

    Google Scholar 

  • Vrieling A (2006) Satellite remote sensing for water erosion assessment: a review. Catena 65:2–18

    Article  Google Scholar 

  • Vrieling A, de Jong S, Sterk G, Rodrigues S (2008) Timing of erosion and satellite data: a multi resolution approach to soil erosion risk mapping. Int J Appl Earth Obs Geoinf 10:267–281

    Article  Google Scholar 

  • Yang S, Zhu Q (2003) A model of intelligent interpreting soil erosion based on geographical knowledge. IGARSS ′03 Proceedings 4:2468–2470

    Google Scholar 

  • Zhou W, Wu B, Zhang L, Li Q, Huang J, Li M (2004) Using remote sensing and GIS to estimate the probability of soil erosion rapidly. IGARSS ′04 Proceedings 5:3375–3378

    Google Scholar 

Download references

Acknowledgments

The work had been funded in the framework of cooperation between the Czech Embassy in Costa Rica, Oficina de Planificación del Área Metropolitana de San Salvador (OPAMSS), Czech Geological Survey, Czech Technical University in Prague (ČVUT), Ministerio de Medio Ambiente y Recursos Naturales de El Salvador (MARN) and Universidad de El Salvador (UES). Authors acknowledge support of the Czech Geological Survey, Oficina de Planificación del Área Metropolitana de San Salvador (OPAMSS), Agronomy Faculty and Civil Engineer School of Universidad de El Salvador and the Geological Survey of the Ministerio de Medio Ambiente y Recursos Naturales de El Salvador (MARN). Special thanks go to Cecy, Andres and Daniel Chávez for assistance during this project. We are grateful to the reviewers and editors whose remarks improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Alexander Chávez Hernandez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chávez Hernandez, J.A., Šebesta, J., Kopecky, L. et al. Application of geomorphologic knowledge for erosion hazard mapping. Nat Hazards 71, 1323–1354 (2014). https://doi.org/10.1007/s11069-013-0948-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-013-0948-8

Keywords

Navigation