Natural Hazards

, Volume 73, Issue 1, pp 37–62 | Cite as

Infiltration effects on a two-dimensional molecular dynamics model of landslides

Original Paper

Abstract

We propose a two-dimensional computational model for deep landslides triggered by rainfall, based on interacting particles or grains. The model describes a vertical section of a fictitious granular material along a slope, in order to study the behavior of a wide-thickness landslide. The triggering of the landslide is caused by the exceeding of two conditions: a threshold speed and a condition on the static friction of the particles, the latter based on the Mohr–Coulomb failure criterion (Coulomb in Mem Acad R Div Sav 7:343–387, 1776; Mohr in Abhandlungen aus dem Gebiete der Technischen Mechanik. Ernst, Berlin, 1914). The interparticle interactions are represented as a potential that, in the absence of suitable experimental data and due to the arbitrariness of the grain dimension, is modeled similarly to the Lennard-Jones’ one (Lennard-Jones in Proc R Soc Lond A 106(738):463–477, 1924), i.e., with an attractive and a repulsive part. For the updating of the particle positions, we use a molecular dynamics method, which is quite suitable for this type of systems (Herrmann and Luding in Continuum Mech Thermodyn 10:189–231, 1998). An infiltration scheme is introduced for modeling the increasing pore pressure due to the rainfall. Finally, we also introduce the viscosity in the dynamical equations of motion. The statistical characterization and dynamical behavior of the results of simulations are quite satisfactory relative to real landslides: We obtain a power law distribution of landslide triggering times, and the velocity patterns are typical of real cases, including the acceleration progression. Therefore, we can claim that this type of modeling can represent a new method to simulate landslides triggered by rainfall.

Keywords

Landslide Infiltration model Molecular dynamics Computational technique 

References

  1. Avolio MV, Lupiano V, Mazzanti P, Di Gregorio S (2008) Modelling combined subaerial-subaqueous flow-like landslides by macroscopic cellular automata. In: Umeo H et al (ed) ACRI 2008, LNCS, vol 5191, pp 329–336Google Scholar
  2. Bonnard CH, Noverraz F (2001) Influence of climate change on large landslides: assessment of long term movements and trends. In: Proceedings of the international conference on landslides causes impact and countermeasures. Gluckauf, Essen, Davos, pp 121–138Google Scholar
  3. Brabb EE (1991) The world landslide problem. Episodes 14:52–61Google Scholar
  4. Campbell R (1975) Soil slips, debris flows and rainstorms in the Santa Monica Mountains and vicinity, Southern California. USGS Professional Paper, vol 851, p 51Google Scholar
  5. Campbell CS (1997) Self-diffusion in granular shear flows. J Fluid Mech 348:85–101CrossRefGoogle Scholar
  6. Campbell CS, Cleary PW, Hopkins MA (1995) Large scale landslide simulations: global deformation, velocities and basal friction. J Geophys Res 100:8267–8283CrossRefGoogle Scholar
  7. Ciamarra MP, Lippiello E, Godano C, de Arcangelis L (2010) Unjamming dynamics: the micromechanics of a seismic fault model. Phys Rev Lett 104:23800. doi:10.1103/PhysRevLett.104.238001 Google Scholar
  8. Cleary PW, Campbell CS (1993) Self-lubrication for long run-out landslides: examination by computer simulation. J Geophys Res 98(21):911–924Google Scholar
  9. Coulomb CA (1776) Essai sur une application des regles des maximis et minimis a quelques problemes de statique relatifs, a la architecture. Mèm Acad Roy Près Divers Savants 7:343–387Google Scholar
  10. Crosta GB, Frattini P (2007) Rainfall-induced landslides and debris flows. Hydrol Process 22:473–477CrossRefGoogle Scholar
  11. Crosta GB, Imposimato S, Roddeman DG (2003) Numerical modelling of large landslides stability and runout. Nat Hazards Earth Syst Sci 3(6):523–538CrossRefGoogle Scholar
  12. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29(819):47–65CrossRefGoogle Scholar
  13. D’Ambrosio D, Di Gregorio S, Iovine G (2003) Simulating debris flows through a hexagonal cellular automata model: SCIDDICA S3-hex. Nat Hazards Earth Syst Sci 3(6):545–559CrossRefGoogle Scholar
  14. D’Ambrosio D, Iovine G, Spataro W, Miyamoto H (2007) A macroscopic collisional model for debris-flows simulation. Environ Model Softw 22(10):1417–1436CrossRefGoogle Scholar
  15. Fukuzono T (1985) A new method for predicting the failure time of a slope. Proceedings of 4th international conference and field workshop on landslides. Japan Landslide Society, Tokyo, pp 145–150Google Scholar
  16. Goren L, Aharonov E, Sparks D, Toussaint R (2011) The mechanical coupling of fluid-filled granular material under shear. Pure Appl Geophys 168:2289–2323CrossRefGoogle Scholar
  17. Gutenberg B, Richter CF (1956) Magnitude and energy of earthquakes. Ann Geofis 9:1–15Google Scholar
  18. Herrmann HJ, Luding S (1998) Modeling granular media on the computer. Continuum Mech Thermodyn 10:189–231CrossRefGoogle Scholar
  19. Heslot F, Baumberger T, Perrin B, Caroli B, Caroli C (1994) Creep, stick–slip, and dry-friction dynamics: experiments and a heuristic model. Phys Rev E 49:6CrossRefGoogle Scholar
  20. Ibsen ML, Casagli N (2004) Rainfall patterns and related landslide incidence in the Porretta-Vergato region, Italy. Landslides 1:143–150CrossRefGoogle Scholar
  21. Iordanoff I, Iliescu D, Charles JL, Neauport J (2010) Discrete element method, a tool to investigate complex material behaviour in material forming. AIP conference proceedings vol 1252(1), pp 778–786. doi:10.1063/1.3457634. http://link.aip.org/link/?APC/1252/778/1
  22. Iovine G, Mangraviti P (2009) The CA-model FLOW-S* for flow-type landslides: an introductory account. Proceedings of the 18th World IMACS congress and MODSIM09 international congress on modelling and simulation, 13–17 July 2009, pp 2679–2685Google Scholar
  23. Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910CrossRefGoogle Scholar
  24. Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 441:727–730CrossRefGoogle Scholar
  25. Lennard-Jones JE (1924) On the determination of molecular fields. Proc R Soc Lond A 106(738):463–477CrossRefGoogle Scholar
  26. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Process Landf 29:687–711CrossRefGoogle Scholar
  27. Martelloni G, Segoni S, Fanti R, Catani F (2012a) Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides 9(4):485–495CrossRefGoogle Scholar
  28. Martelloni G, Massaro M, Bagnoli F (2012b) A computational toy model for shallow landslides: molecular dynamics approach. Commun Nonlinear Sci Numer Simul 18(9):2479–2492. doi:10.1016/j.cnsns.2012.11.026 CrossRefGoogle Scholar
  29. Massaro E, Martelloni G, Bagnoli F (2011) Particle based method for shallow landslides: modeling sliding surface lubrication by rainfall. CMSIM Int J Nonlinear Sci, pp 147–158. ISSN 2241-0503Google Scholar
  30. Mohr O (1914) Abhandlungen aus dem Gebiete der Technischen Mechanik, 2nd edn. Ernst, BerlinGoogle Scholar
  31. Nielsen S, Taddeucci J, Vinciguerra S (2010) Experimental observation of stick–slip instability fronts. Geophys J Int 180:697–702CrossRefGoogle Scholar
  32. Omori F (1895) On the aftershocks of earthquakes. J Coll Sci Imp Univ Tokyo 7:111–200Google Scholar
  33. Patra AK, Bauer AC, Nichita CC, Pitman EB, Sheridan MF, Bursik M, Rupp B, Webber A, Stinton A, Namikawa L, Renschler C (2005) Parallel adaptive numerical simulation of dry avalanches over natural terrain. J Volcanol Geotherm Res 139:1–21CrossRefGoogle Scholar
  34. Petley DN, Allison RJ (1998) The mechanics of deep-seated landslides. Earth Surf Process Landf 22(8):747–758CrossRefGoogle Scholar
  35. Potapov AV, Hunt ML, Campbell CS (2001) Liquid–solid flows using smoothed particle hydrodynamics and discrete element method. Powder Technol 116:204–213CrossRefGoogle Scholar
  36. Rosi A, Segoni S, Catani F, Casagli N (2012) Statistical and environmental analyses for the definition of a regional rainfall threshold system for landslide triggering in Tuscany (Italy). J Geogr Sci 22(4):617–629CrossRefGoogle Scholar
  37. Segoni S, Leoni L, Benedetti AI, Catani F, Righini G, Falorni G, Gabellani S, Rudari R, Silvestro F, Rebora N (2009) Towards a definition of a real-time forecasting network for rainfall induced shallow landslides. Nat Hazards Earth Syst Sci 9:2119–2133CrossRefGoogle Scholar
  38. Sornette D, Helmstetter A, Grasso JR, Andersen JV, Gluzman S, Pisarenko V (2004) Towards landslide predictions: two case studies. Phys A 338:605–632CrossRefGoogle Scholar
  39. Suwa H, Mizuno T, Ishii T (2010) Prediction of a landslide and analysis of slide motion with reference to the 2004 Ohto slide in Nara, Japan. Geomorphology 124:157–163CrossRefGoogle Scholar
  40. Terzaghi K (1943) Theoretical soil mechanics. Wiley, New YorkCrossRefGoogle Scholar
  41. Thorton C, Yin KK (1991) Impact of elastic spheres with and without adhesion. Powder Technol 65:153–165CrossRefGoogle Scholar
  42. Turcotte DL (1997) Fractals and chaos in geology and geophysics, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  43. Turcotte DL, Malamud BD (2004) Landslides, forest fires, and earthquakes: examples of self-organized critical behavior. Phys A 340:580–589CrossRefGoogle Scholar
  44. Van Asch TWJ, Buma J, van Beek LPH (1999) A view on some hydrological triggering systems in landslides. Geomorphology 30:25–32CrossRefGoogle Scholar
  45. Van Asch TWJ, Malet J-P, van Beek LPH, Amitrano D (2007) Techniques, issues and advances in numerical modelling of landslide hazard. Bull Soc Geol Fr 178(2):65–88CrossRefGoogle Scholar
  46. Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Physics and AstronomyCenter for the Study of Complex Dynamics (CSDC)Sesto Fiorentino (FI)Italy
  2. 2.INFN, Sez. FirenzeFlorenceItaly

Personalised recommendations