Natural Hazards

, Volume 71, Issue 1, pp 363–383 | Cite as

Estimate of the debris-flow entrainment using field and topographical data

  • Clàudia AbancóEmail author
  • Marcel Hürlimann
Original Paper


The entrainment of material is a common process in debris-flow behaviour and can strongly increase its total volume. However, due to the complex nature of the process, the exact mechanisms of entrainment have not yet been solved. We analysed geomorphological and topographical data collected in 110 reaches of 17 granular debris flows occurred in the Pyrenees and the European Alps. Four governing factors (sediment availability, channel-bed slope, channel cross section shape and upstream-contributing area) were selected and defined for all the 110 reaches. One dataset of the resulting database was used to develop two models to estimate the erosion rates based on the governing factors: a formula derived from multiple linear regression (MLR) analysis and a decision tree (DT) obtained from J48 algorithm. The models obtained using these learning techniques were validated in another independent dataset. In this validation set, the DT model revealed better results. The models were also implemented in a torrent (test set), where the total debris-flow volume was known and two empirical methods (available in literature) were applied. This test revealed that both MLR and DT predict more accurately the final volume of the event than the empirical equations for volume prediction. Finally, a general DT was proposed, which includes three governing factors: sediment availability, channel-bed slope and channel cross section shape. This DT may be applied to other regions after adapting it regarding site-specific characteristics.


Debris flow Entrainment Field Topographical 



This research has been funded by the Spanish Ministry MINECO contract CGL2011-23300 (project DEBRIS-START). We would like to thank the Gesäuse National Park, the Aigüestortes i Estany de Sant Maurici National Park, François Xavier Marquis, Institut Geològic de Catalunya (IGC) and the WSL for their support on data acquisition. We are grateful to Christian Scheidl, Vicente Medina, Carlo Gregoretti, José Moya and the two anonymous reviewers for their constructive comments on previous versions of the manuscript and the DT and Mar Obrador for improving our English writing.


  1. Berger C, McArdell BW, Schlunegger F (2011) Sediment transfer patterns at the Illgraben catchment, Switzerland: implications for the time scales of debris flow activities. Geomorphology 125:421–432CrossRefGoogle Scholar
  2. Bovis MJ, Jakob M (1999) The role of debris supply conditions in predicting debris flow activity. Earth Surf Process Land 24:1039–1054CrossRefGoogle Scholar
  3. Breien H, De Blasio FV, Elverhoi A, Hoeg K (2008) Erosion and morphology of a debris flow caused by a glacial lake outburst flood, Western Norway. Landslides 5:271–280CrossRefGoogle Scholar
  4. Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Wadsworth & Brooks/Cole Advanced Books & Software, LondonGoogle Scholar
  5. Chen J, YP H, FQ W (2005) Debris flow erosion and deposition in Jiangjia Gully, Yunnan, China. Environ Geol 48:771–777. doi: 10.1007/s00254-005-0017-z CrossRefGoogle Scholar
  6. Chevalier G, Medina V, Hürlimann M, Bateman A (2013) Online available. Debris-flow susceptibility analysis using fluvio-morphological parameters: application to the Central-Eastern Pyrenees. Nat Hazards. doi: 10.1007/s11069-013-0568-3
  7. Coussot P, Meunier M (1996) Recognition, classification and mechanical description of debris flows. Earth Sci Rev 40:209–227CrossRefGoogle Scholar
  8. Crosta GB, Imposimato S, Roddeman D (2009) Numerical modelling of entrainment/deposition in rock and debris-avalanches. Eng Geol 109:135–145CrossRefGoogle Scholar
  9. D’Agostino V (1996) Analisi quantitativa e qualitativa del transporto solido torrentizio nei bacini montani del Trentino Orientale, 1a Sezione, Volume presentato in occasione del Convegno di Studio: I problemi dei grandi comprensori irrigui, Novara, pp 111–123Google Scholar
  10. Degetto M, Crucil G, Pimazzoni A, Masetto C, Gregoretti C (2011) An estimate of the sediments volume entrainable by debris flow along Strobel and South Pezorìes channels at Fiames (Dolomites, Italy). In: Genevois R, Hamilton D, Prestininzi A (eds), 5th International Conference on Debris Flow Hazards. Mitigation, Mechanics, Prediction and Assessment. Casa Editrice Università La Sapienza, Padua, Italy, pp 845–855Google Scholar
  11. Denlinger RP, Iverson RM (2001) Flow of variably fluidized granular masses across three-dimensional terrain 2. Numerical predictions and experimental tests. J Geophys Res B 106:553–566CrossRefGoogle Scholar
  12. Dong JJ, Lee CT, Tung YH, Liu CN, Lin KP, Lee JF (2009) The role of the sediment budget in understanding debris flow susceptibility. Earth Surf Process Land 34(12):1612–1624CrossRefGoogle Scholar
  13. Egashira S, Honda N, Itoh T (2001) Experimental study on the entrainment of bed material into debris flow. Phys Chem Earth Part C 26(9):645–650Google Scholar
  14. ESRI (2005) ArcGIS 9: what is ArcGIS 9.1? ESRI, Redlands, CAGoogle Scholar
  15. Fannin RJ, Rollerson TP (1993) Debris flows: some physical characteristics and behaviour. Can Geotech J 30:71–81CrossRefGoogle Scholar
  16. Fannin RJ, Wise MP (2001) An empirical-statistical model for debris flow travel distance. Can Geotech J 38:982–994CrossRefGoogle Scholar
  17. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874CrossRefGoogle Scholar
  18. Fayyad U, Piatetsky-Saphiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI Magazine 17(3):37–54Google Scholar
  19. Franzi L, Bianco G (2001) A statistical method to predict debris flow deposited volumes on a debris fan. Phys Chem Earth 26(9):683–688CrossRefGoogle Scholar
  20. Gabet EJ, Bookter A (2008) A morphometric analysis of gullies scoured by post-fire progressively bulked debris flows in southwest Montana, USA. Geomorphology 96:298–309. doi: 10.1016/j.geomorph.2007.03.016 CrossRefGoogle Scholar
  21. Gartner JE, Cannon SH, Santi PM, DeWolfe VG (2008) Empirical models to predict the volumes of debris flows generated by recently burned basins in the western US. Geomorphology 96:339–354CrossRefGoogle Scholar
  22. Gertsch E (2009) Geschiebelieferung alpiner Wildbachsysteme bei Grossereignissen—Ereignisanalysen und Entwicklung eines Abschätzverfahrens Universität Bern, Bern, p 204Google Scholar
  23. Guthrie RH, Hockin A, Colquhoun L, Nagy T, Evans SG, Ayles C (2009) An examination of controls on debris flow mobility: evidence from coastal British Columbia. Geomorphology 114(4):601–613CrossRefGoogle Scholar
  24. Hall MA, Frank E, Holmes G, Pfahringer B, Reutmann P, Witten IH (2009) The WEKA data mining software: an update. SIGKKD Explor 11(1):10–18CrossRefGoogle Scholar
  25. Hripcsak G, Rothschild AS (2005) Agreement, the f-measure, and reliability in information retrieval. J Am Med Inf As 12:296–298CrossRefGoogle Scholar
  26. Hungr O, Morgan GC, Kellerhals R (1984) Quantitative analysis of debris torrent hazards for design of remedial measures. Can Geotech J 21:663–677CrossRefGoogle Scholar
  27. Hungr O, McDougall S, Bovis M (2005) Entrainment of material by debris flow. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer, Berlin, pp 135–158CrossRefGoogle Scholar
  28. Hürlimann M, Rickenmann D, Graf C (2003) Field and monitoring data of debris-flow events in the Swiss Alps. Can Geotech J 40(1):161–175CrossRefGoogle Scholar
  29. Hürlimann M, Abancó C, Moya J, Vilajosana I (2013) Results and experiences gathered at the Rebaixader debris-flow monitoring site. Central Pyrenees, SpainGoogle Scholar
  30. Iverson RM (2012) Elementary theory of bed-sediment entrainment by debris flows and avalanches. J Geophys Res F Earth Surface 117:F03006. doi: 10.1029/2011JF002189
  31. Iverson RM, Reid ME, Logan M, LaHusen RG, Godt JW, Griswold JP (2011) Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat Geosci 4(2):116–121CrossRefGoogle Scholar
  32. Jakob M, Bovis M, Oden M (2005) The significance of channel recharge rates for estimating debris-flow magnitude and frequency. Earth Surf Process Landf 30:755–766CrossRefGoogle Scholar
  33. Kronfellner-Kraus G (1985) Quantitative estimation of torrent erosion, International Symposium on Erosion and Disaster Prevention, Tsukuba (Japan)Google Scholar
  34. Mangeney A (2011) Landslide boost from entrainment. Nat Geosci 4:77–78CrossRefGoogle Scholar
  35. Mangeney A, Roche O, Hungr O, Mangold N, Faccanoni G, Lucas A (2010) Erosion and mobility in granular collapse over sloping beds. J Geophys Res 115(F03040). doi: 10.1029/2009JF001462
  36. Marchi L, D’Agostino V (2004) Estimation of debris-flow magnitude in the Eastern Italian Alps. Earth Surf Process Landf 29(2):207–220CrossRefGoogle Scholar
  37. Marchi L, Cavalli M, Sangati M, Borga M (2009) Hydrometeorological controls and erosive response of an extreme alpine debris flow. Hydrol Process 23:2714–2727CrossRefGoogle Scholar
  38. Marquis FX (2006) Torrents des Glariers et du Pessot- lave torrentielle et inondation du 22.07.2006: description et analyse de l’événement, Commune de Collombey-Muraz, MontheyGoogle Scholar
  39. Marquis FX (2008) Lave torrentielle du 29.06.08-Description et analyse de l’événement (Torrent Sec), Communes de Collonges et de Lavey-Morcles, MontheyGoogle Scholar
  40. McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41:1084–1097CrossRefGoogle Scholar
  41. Medina V, Hürlimann M, Bateman A (2008) Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides 5:127–142CrossRefGoogle Scholar
  42. Muñoz A (1992) Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. In: McClay KR (ed) Thrust tectonics. Chapman & Hall, London, pp 235–246CrossRefGoogle Scholar
  43. Oller P, Pinyol J (2009) Nota de la sortida de camp a la barrera flexible d’anells a Erill la Vall i als corrents d’arrossegalls a la vall de Sant Nicolau al Parc Nacional d’Aigüestortes i Estany de Sant Maurici, Institut Geològic de CatalunyaGoogle Scholar
  44. Papa M, Egashira S, Itoh T (2004) Critical conditions of bed sediment entrainment due to debris flow. Nat Hazards Earth Sci. 4(3):469–474CrossRefGoogle Scholar
  45. Pierson TC, Scott KM (1985) Downstream dilution of a Lahar: transition from debris flow to hyperconcentrated streamflow. Water Resour Res 21(10):1511–1524CrossRefGoogle Scholar
  46. Pinyol J (2008) Nota tècnica sobre la visita al barranc de Portainé i al barranc des Caners els dies 1 i 2 d’octubre 2008 en motiu de la torrentada ocorreguda la matinada del dia 12 de setembre de 2008. Insitut Geològic de CatalunyaGoogle Scholar
  47. Rickenmann D (1995) Beurteilung von Murgängen. Schweiz Ingenieur und Architekt 113(48):1104–1108Google Scholar
  48. Rickenmann D, Zimmermann M (1993) The 1987 debris flows in Switzerland: documentation and analysis. Geomorphology 8:175–189CrossRefGoogle Scholar
  49. Rickenmann D, Weber D, Stepanov B (2003) Erosion by debris flows in field and laboratory experiments. In: Rickenmann D, Chen C (eds) 3rd international conference on debris-flow hazards mitigation. Millpress, Davos, pp 883–894Google Scholar
  50. Scheidl C, Rickenmann D, Chiari M (2008) The use of airbone LIDAR data for the analysis of debris flow events in Switzerland. Nat Hazards Earth Syst Sci 8:1113–1127CrossRefGoogle Scholar
  51. Spreafico M, Lehmann C, Naef O (1999) Recommandations concernant l’estimation de la charge sédimentaire dans les torrents. Groupe de travail pour l’hydrologie opérationnelle, BerneGoogle Scholar
  52. Takei A (1984) Interdependence of sediment budget between individual torrents and river-system. Interpraevent, Villach, Austria, pp 35–48Google Scholar
  53. Theule J, Liébault F, Loye A, Laigle D, Jaboyedoff M (2012) Sediment budget monitoring of debris-flow and bedload transport in the Manival Torrent, SE France. Nat Hazards Earth Syst Sci 12:731–749CrossRefGoogle Scholar
  54. VanDine DF (1985) Debris flows and debris torrents in the southern Canadian Cordillera. Can Geotech J 22:44–68CrossRefGoogle Scholar
  55. Wan S, Chiang Lei T (2009) A knowledge-based decision support system to analyze the debris-flow problems at Chen-Yu-Lan River, Taiwan. Knowledge-Based Syst 22:580–588CrossRefGoogle Scholar
  56. Witten IH, Frank E, Hall MA (2011) Data mining: practical machine learning tools and techniques, 3rd edn. Morgan Kaufmann, BurlingtonGoogle Scholar
  57. Zeller J (1985) Feststoffmessung in kleinen Gebirgseinzugsgebieten. Wasser Energie Luff 77(7/8):246–251Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Geotechnical Engineering and Geo-SciencesTechnical University of Catalonia BARCELONATECHBarcelonaSpain

Personalised recommendations