Natural Hazards

, Volume 71, Issue 1, pp 335–362 | Cite as

Towards a science of past disasters

Original Paper

Abstract

It is widely recognised that natural disasters emerge in the interplay between extreme geophysical events and the human communities affected by them. Whilst detailed natural scientific knowledge of a given event is critical in understanding its impacts, an equally thorough understanding of the affected communities, their economies, ecologies, religious structures, and how all of these have developed over time is arguably as important. Many extreme events leave methodologically convenient traces in the geological and archaeological records in the form of discrete stratigraphic layers often associated with both accurate and precise dates. This paper focuses on volcanic eruptions and draws on matched case studies to illustrate the usefulness of a two-step, quasi case–control comparative method for examining vulnerability and impacts in the near- and far-fields of these eruptions. Although issues of data resolution often plague the study of past disasters, these limitations are counterbalanced by the access to unique long-term information on societies and their material expressions of livelihood, as well as a similarly long-term perspective on the critical magnitude/frequency relationship of the geophysical trigger(s) in question. By drawing together aspects of contemporary Disaster Risk Reduction research, archaeology, and volcanology, this paper sketches out a methodological roadmap for a science of past disasters that aims to be relevant for not only understanding vulnerabilities and impacts in the deep past, but for also better understanding vulnerability in the present.

Keywords

Archaeology Past disaster science Natural experiments of history Laacher See eruption Thera eruption Volcán Ilopango Eyjafjallajökull 

References

  1. Adger WN (2006) Vulnerability. Glob Environ Chang 16(3):268–281Google Scholar
  2. Alexander DE (1995) A survey of the field of natural hazards and disaster studies. In: Carrara A, Guzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, Amsterdam, pp 1–19Google Scholar
  3. Alexander DE (1997) The study of natural disasters, 1977–1997: some reflection on a changing field of knowledge. Disasters 21(4):284–304Google Scholar
  4. Álvarez-Fernandez E (2009) Magdalenian personal ornaments on the move: a review of the current evidence in Central Europe. Zephyrus 63:45–59Google Scholar
  5. Arrhenius B (2013) Helgö in the shadow of the dust veil 536–537. J Archaeol Anc Hist 5:1–14Google Scholar
  6. Axboe M (1999) The year 536 and the Scandinavian gold hoards. Mediev Archaeol 43:186–188Google Scholar
  7. Axboe M (2001) Amulet pendants and a darkened sun. In: Magnus B (ed) Roman gold and the development of the early Germanic kingdoms, history and antiquities. Royal Academy of Letters, Stockholm, pp 119–136Google Scholar
  8. Baales M (2002) Der spätpaläolithische Fundplatz Kettig: Untersuchungen zur Siedlungsarchäologie der Federmesser-Gruppen am Mittelrhein. Verlag Rudolf Habelt GmbH, BonnGoogle Scholar
  9. Baales M, Jöris O, Street M, Bittmann F, Weninger B, Wiethold J (2002) Impact of the late glacial eruption of the Laacher See Volcano, Central Rhineland, Germany. Quat Res 58(3):273–288Google Scholar
  10. Bailey AJ (2011) Population geographies and climate change. Prog Hum Geog 35(5):686–695Google Scholar
  11. Baillie MGL (1991) Marking in marker dates: towards an Archaeology with historical precision. World Archaeol 23(2):233–243Google Scholar
  12. Bandi H-G (1968) Das Jungpaläolithikum. Ur- und Frühgeschichtliche Archäologie der Schweiz 1:107–122Google Scholar
  13. Bankoff G (2004) Time is of the essence: disasters, vulnerability and history. Int J Mass Emerg Disasters 22(3):23–42Google Scholar
  14. Beaudoin AB, Oetelaar GA (2006) The day the dry snow fell: the record of a 7627-year-old disaster. In: Payne M, Wetherell D, Kavanaugh C (eds) Alberta formed Alberta transformed, vol 1. University of Alberta Press/University of Calgary Press, EdmontonGoogle Scholar
  15. Benediktsson K, Lund KA, Huijbens E (2011) Inspired by eruptions? Eyjafjallajökull and Icelandic tourism. Mobilities 6(1):77–84Google Scholar
  16. Bicknell P (2000) Late Minoan IB marine ware, the marine environment of the Aegean, and the Bronze Age eruption of the Thera volcano. Geol Soc Spec Publ 171(1):95–103Google Scholar
  17. Bird D, Gísladóttir G (2012) Residents’ attitudes and behaviour before and after the 2010 Eyjafjallajökull eruptions—a case study from southern Iceland. Bull Volcanol 74(6):1263–1279Google Scholar
  18. Bird D, Gísladóttir G, Dominey-Howes D (2011) Different communities, different perspectives: issues affecting residents’ response to a volcanic eruption in southern Iceland. Bull Volcanol 73(9):1209–1227Google Scholar
  19. Birkmann J, Buckle P, Jaeger J, Pelling M, Setiadi N, Garschagen M, Fernando N, Kropp J (2010) Extreme events and disasters: a window of opportunity for change? Analysis of organizational, institutional and political changes, formal and informal responses after mega-disasters. Nat Hazards 55(3):637–655Google Scholar
  20. Birkmann J, Cardona OD, Carreño ML, Barbat AH, Pelling M, Schneiderbauer S, Kienberger S, Keiler M, Alexander D, Zeil P, Welle T (2013) Framing vulnerability, risk and societal responses: the MOVE framework. Nat Hazards 67(2):193–211Google Scholar
  21. Birks HJB, Lotter AF (1994) The impact of the Laacher See Volcano (11000 year B.P.) on terrestrial vegetation and diatoms. J Paleolimnol 11:313–322Google Scholar
  22. Birtchnell T, Büscher M (2011) Stranded: an eruption of disruption. Mobilities 6(1):1–9Google Scholar
  23. Black R, Bennett SRG, Thomas SM, Beddington JR (2011) Climate change: migration as adaptation. Nature 478(7370):447–449Google Scholar
  24. Blong RJ (1982) The time of darkness. Local legends and volcanic reality in Papua New Guinea. University of Washington Press, SeattleGoogle Scholar
  25. Bocquet-Appel J-P, Demars P-Y, Noiret L, Dobrowsky D (2005) Estimates of Upper Palaeolithic meta-population size in Europe from archaeological data. J Archaeol Sci 32:1656–1668Google Scholar
  26. Bodu P (1998) Magdalenians-early Azilians in the centre of the Paris Basin: a filiation? The example of Le Closeau (Rueil-Malmaison, France). In: Milliken S (ed) The organization of lithic technology in late glacial and early postglacial of Europe. Oxbow, Oxford, pp 131–147Google Scholar
  27. Brauer A, Endres C, Negendank JFW (1999) Lateglacial calendar year chronology based on annually laminated sediments from Lake Meerfelder Maar, Germany. Quat Int 61:17–25Google Scholar
  28. Brinch Petersen E (2009) The human settlement of southern Scandinavia 12500–8700 cal BC. In: Street M, Barton RNE, Terberger T (eds) Humans, environment and chronology of the late glacial of the North European Plain. RGZM—Tagungen, Band 6. Verlag des Römisch-Germanischen Zentralmuseums, Mainz, pp 89–129Google Scholar
  29. Bryson RU, Bryson RA, Ruter A (2006) A calibrated radiocarbon database of late quaternary volcanic eruptions. eEarth Discussions 1:123–134Google Scholar
  30. Cashman KV, Cronin SJ (2008) Welcoming a monster to the world: myths, oral tradition, and modern societal response to volcanic disasters. J Volcanol Geoth Res 176(3):407–418Google Scholar
  31. Chester DK (2005) Theology and disaster studies: the need for dialogue. J Volcanol Geoth Res 146(4):319–328Google Scholar
  32. Chester DK, Duncan AM (2007) Geomythology, theodicy, and the continuing relevance of religious worldviews on responses to volcanic Eruptions. In: Grattan J, Torrence R (eds) Living under the shadow. Cultural impacts of volcanic eruptions. Left Coast Press, Walnut Creek, pp 203–224Google Scholar
  33. Chester DK, Degg M, Duncan AM, Guest JE (2001) The increasing exposure of cities to the effects of volcanic eruptions: a global survey. Environ Hazards 2(3):89–103Google Scholar
  34. Chester DK, Duncan AM, Sangster H (2012) Human responses to eruptions of Etna (Sicily) during the late-pre-industrial era and their implications for present-day disaster planning. J Volcanol Geoth Res 225–226:65–80Google Scholar
  35. Clarke L (1999) Mission improbable. Using fantasy documents to tame disaster. The University of Chicago Press, ChicagoGoogle Scholar
  36. Clarke L (2006) Worst cases. Terror and catastrophe in the popular imagination. The University of Chicago Press. Chicago Google Scholar
  37. Clarke L (2007) Thinking possibilistically in a probabilistic world. Significance 4(4):190–192Google Scholar
  38. Clarke L (2008a) Possibilistic thinking: a new conceptual tool for thinking about extreme events. Soc Res 75(3):669–690, 1033Google Scholar
  39. Clarke L (2008b) Thinking about worst-case thinking. Sociol Inq 78(2):154–161Google Scholar
  40. Cooper J, Sheets PD (eds) (2012) Surviving sudden environmental change. University of Colorado Press, BoulderGoogle Scholar
  41. Coudret P, Fagnart J-P (1997) Les industries à Federmesser dans le bassin de la Somme: chronologie et identité des groupes culturels. Bulletin de la Société Préhistorique Française 94(3):349–360Google Scholar
  42. Cronin S, Petterson M, Taylor P, Biliki R (2004a) Maximising multi-stakeholder participation in government and community volcanic hazard management programs; a case study from Savo, Solomon Islands. Nat Hazards 33(1):105–136Google Scholar
  43. Cronin SJ, Gaylord DR, Charley D, Alloway BV, Wallez S, Esau JW (2004b) Participatory methods of incorporating scientific with traditional knowledge for volcanic hazard management on Ambae Island, Vanuatu. Bull Volcanol 66(7):652–668Google Scholar
  44. Crosweller HS, Arora B, Brown SK, Cottrell E, Deligne NI, Guerrero NO, Hobbs L, Kiyosugi K, Loughlin SC, Lowndes J, Nayembil M, Siebert L, Sparks RSJ, Takarada S, Venzke E (2012) Global database on large magnitude explosive volcanic eruptions (LaMEVE). J Appl Volcanol 1(1):4Google Scholar
  45. Cutter SL (1996) Vulnerability to environmental hazards. Prog Hum Geog 20(4):529–539Google Scholar
  46. Cutter SL, Boruff BJ, Shirley WL (2003) Social vulnerability to environmental hazards. Soc Sci Quart 84(2):242–261Google Scholar
  47. Davies SM, Larsen G, Wastegård S, Turney CSM, Hall VA, Coyle L, Thordarson T (2010) Widespread dispersal of Icelandic tephra: how does the Eyjafjöll eruption of 2010 compare to past Icelandic events? J Quat Sci 25(5):605–611Google Scholar
  48. De Bélizal É, Lavigne F, Gaillard JC, Grancher D, Pratomo I, Komorowski J-C (2012) The 2007 eruption of Kelut volcano (East Java, Indonesia): phenomenology, crisis management and social response. Geomorphology 136(1):165–175Google Scholar
  49. De Bie M, Caspar J-P (2000) Rekem. A Federmesser Camp on the Meuse River Bank, vol 1. Leuven University Press, LeuvenGoogle Scholar
  50. De Bie M, Vermeersch PM (1998) Pleistocene-Holocene transition in the Benelux. Quat Int 49(50):29–43Google Scholar
  51. de Boer JZ, Sanders DT (2002) Volcanoes in human history. The far-reaching effects of major eruptions. Princeton University Press, PrincetonGoogle Scholar
  52. de Klerk P, Janke W, Kühn P, Theuerkauf M (2008) Environmental impact of the Laacher See eruption at a large distance from the volcano: integrated palaeoecological studies from Vorpommern (NE Germany). Palaeogeogr Palaeocl 270(1–2):196–214Google Scholar
  53. Debout G, Olive M, Bignon O, Bodu P, Chehmana L, Valentin B (2012) The Magdalenian in the Paris Basin: new results. Quat Int 272–273:176–190Google Scholar
  54. Dev S, Riede F (2012) Quantitative functional analysis of late glacial projectile points from northern Europe. Lithics 33:40–55Google Scholar
  55. Diamond JM, Robinson JA (2010a) Afterword: using comparative methods in studies of human history. In: Diamond JM, Robinson JA (eds) Natural experiments of history. Belknap Press, Cambridge, pp 267–275Google Scholar
  56. Diamond JM, Robinson JA (eds) (2010b) Natural experiments of history. Belknap Press, CambridgeGoogle Scholar
  57. Dix A, Röhrs M (2007) Vergangenheit versus Gegenwart? Anmerkungen zu Potentialen, Risiken und Nebenwirkungen einer Kombination historischer und aktueller Ansätze der Naturgefahrenforschung. Hist Soc Res 32(3):215–234Google Scholar
  58. Donovan A, Oppenheimer C, Bravo M (2011) Rationalising a volcanic crisis through literature: Montserratian verse and the descriptive reconstruction of an island. J Volcanol Geoth Res 203(3–4):87–101Google Scholar
  59. Driessen J, MacDonald CF (1997) The troubled Island: Minoan Crete before and after the Santorini eruption. Aegaeum No.17. Université de Liège, Histoire de l’art et archéologie de la Grèce antique LiegeGoogle Scholar
  60. Driessen J, MacDonald CF (2000) The eruption of the Santorini volcano and its effects on Minoan Crete. Geol Soc Spec Publ 171(1):81–93Google Scholar
  61. Dull RA, Southon JR, Payson S (2001) Volcanism, ecology and culture: a reassessment of the Volcán Ilopango Tbj eruption in the Southern Maya Realm. Lat Am Antiq 12(1):25–44Google Scholar
  62. Dunning T (2008) Improving causal inference: strengths and limitations of natural experiments. Polit Res Quart 61(2):282–293Google Scholar
  63. Dunning T (2012) Natural experiments in the social sciences. Cambridge University Press, CambridgeGoogle Scholar
  64. Eriksen BV (1996) Resource Exploitation, Subsistence Strategies, and Adaptiveness in Late Pleistocene-Early Holocene Northwest Europe. In: Straus LG, Eriksen BV, Erlandson JM, Yesner DR (eds) Humans at the end of the ice age. The archaeology of the pleistocene-holocene transition. Plenum Press, New York, pp 101–128Google Scholar
  65. Erkens G, Hoffmann T, Gerlach R, Klostermann J (2011) Complex fluvial response to Lateglacial and Holocene allogenic forcing in the Lower Rhine Valley (Germany). Quat Sci Rev 30(5–6):611–627Google Scholar
  66. Fekete A, Damm M, Birkmann J (2010) Scales as a challenge for vulnerability assessment. Nat Hazards 55(3):729–747Google Scholar
  67. Felgentreff C, Glade T (eds) (2008) Naturrisiken und Sozialkatastrophen. Spektrum Akademischer Verlag, BerlinGoogle Scholar
  68. Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. Working groups I and II of the intergovernmental panel on climate change, special report. Cambridge University Press, CambridgeGoogle Scholar
  69. Fischer A, Mortensen MF, Henriksen PS, Mathiassen DR, Olsen J (2013) Dating the Trollesgave site and the Bromme culture—chronological fix-points for the Lateglacial settlement of Southern Scandinavia. J Archaeol Sci 40(12):4663–4674Google Scholar
  70. Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer, BerlinGoogle Scholar
  71. Fitzhugh B (2012) Hazards, impacts, and resilience among hunter-gatherers of the Kuril Islands. In: Cooper J, Sheets PD (eds) Surviving sudden environmental change. University of Colorado Press, Boulder, pp 19–42Google Scholar
  72. Friedrich WL (2009) Santorini: volcano, natural history, mythology. Aarhus University Press, ÅrhusGoogle Scholar
  73. Friedrich WL, Kromer B, Friedrich M, Heinemeier J, Pfeiffer T, Talamo S (2006) Santorini eruption radiocarbon dated to 1627–1600 BC. Science 312(5773):548Google Scholar
  74. Galavotti MC (2003) Observation and experiment in the natural and social sciences. Kluwer, AmsterdamGoogle Scholar
  75. Gamble C, Davies W, Pettitt P, Richards M (2004) Climate change and evolving human diversity in Europe during the last glacial. Philos Trans R Soc B 359:243–254Google Scholar
  76. García-Acosta V (2002) Historical disaster research. In: Hoffman SM, Oliver-Smith A (eds) Catastrophe & culture: the anthropology of disaster. School of American research advanced seminar series. School of American Research Press, Santa Fe, pp 49–66Google Scholar
  77. Gelhausen F, Kegler J, Wenzel S (2004) Hütten Oder Himmel? Latente Behausungsstrukturen im Spätpaläolithikum Mitteleuropas. Jahrbuch des Römisch-Germanischen Zentralmuseum Mainz 51(1):1–22Google Scholar
  78. Gerrard C, Petley D (2013) A risk society? Environmental hazards, risk and resilience in the later middle ages in Europe. Nat Hazards 69(1):1051–1079Google Scholar
  79. Graf H-F, Timmreck C (2001) A general climate model simulation of the aerosol radiative effects of the Laacher See eruption (10,900 BC). J Geophys Res 106(14):14747–14756Google Scholar
  80. Gräslund B (2008) Fimbulvintern, Ragnarök och klimatkrisen år 536–537 e. Kr. Saga och Sed 2007:93–123Google Scholar
  81. Gräslund B, Price N (2012) Twilight of the gods? The ‘dust veil event’ of AD 536 in critical perspective. Antiquity 86(332):428–443Google Scholar
  82. Grattan J, Torrence R (eds) (2007a) Living under the shadow. Cultural impacts of volcanic eruptions. One world archaeology no. 53. Left Coast Press, Walnut CreekGoogle Scholar
  83. Grattan J, Torrence R (2007b) Beyond gloom and doom: the long-term consequences of volcanic disasters. In: Grattan J, Torrence R (eds) Living under the shadow. Cultural impacts of volcanic eruptions. Left Coast Press, Walnut Creek, pp 1–18Google Scholar
  84. Grayson DK, Sheets PD (1979) Volcanic disasters and the archaeological record. In: Sheets PD, Grayson DK (eds) Volcanic Activity and Human Ecology. Academic Press, London, pp 623–632Google Scholar
  85. Grünberg JM (2006) New AMS dates for Palaeolithic and Mesolithic camp sites and single finds in Saxony-Anhalt and Thuringia (Germany). Proc Prehist Soc 72:95–112Google Scholar
  86. Gunn JD (ed) (2000) The years without summer. Tracing AD 536 and its aftermath. British archaeological reports (international series) 872. Archaepress, OxfordGoogle Scholar
  87. Harms E, Schmincke H-U (2000) Volatile composition of the phonolitic Laacher See magma (12,900 year BP): implications for syn-eruptive degassing of S, F, Cl and H2O. Contrib Min Petr 138(1):84–98Google Scholar
  88. Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, OxfordGoogle Scholar
  89. Helbing D (2013) Globally networked risks and how to respond. Nature 497(7447):51–59Google Scholar
  90. Helbling J (2006) Coping with ‘natural’ disasters in pre-industrial societies: some comments. Mediev Hist J 10(1–2):429–446Google Scholar
  91. Hewitt K (ed) (1983) Interpretations of calamity. Allen & Unwin Inc., BostonGoogle Scholar
  92. Hilhorst T, Bankoff G (2004) Introduction: mapping vulnerability. In: Hilhorst T, Frerks G, Bankoff G (eds) Mapping vulnerability: disasters, development, and people. Earthscan Publications, London, pp 1–9Google Scholar
  93. Howell L (ed) (2013) Global risks 2013. World economic forum risks reports, 8th edn. World Economic Forum, GenevaGoogle Scholar
  94. Hoyois P, Guha-Sapir D (2012) Measuring the human and economic impact of disasters. CRED/Government Office for Science, LouvainGoogle Scholar
  95. Hulme M (2008) The conquering of climate: discourses of fear and their dissolution. Geogr J 174(1):5–16Google Scholar
  96. Janku A, Schenk GJ, Mauelshagen F (eds) (2012) Historical disasters in context: science, religion, and politics. Routledge, New YorkGoogle Scholar
  97. Janssens MM, Kasse C, Bohncke SJP, Greaves H, Cohen KM, Wallinga J, Hoek WZ (2012) Climate-driven fluvial development and valley abandonment at the last glacial-interglacial transition (Oude IJssel-Rhine, Germany). Neth J Geosci 91(1–2):37–62Google Scholar
  98. Jochim MA, Herhahn C, Starr H (1999) The Magdalenian colonization of Southern Germany. Am Anthropol 101(1):129–142Google Scholar
  99. Knappett C, Rivers R, Evans T (2011) The Theran eruption and Minoan palatial collapse: new interpretations gained from modelling the maritime network. Antiquity 85(329):1008–1023Google Scholar
  100. Krämer D (2009) Sie haben festgestellt, dass es keinen Sommer gegeben hat. Der Ausbruch des Tambora (Indonesien) am 10. April 1815 und seine Auswirkungen. In: Schenk GJ (ed) Katastrophen. Vom Untergang Pompejis bis zum Klimawandel. Jan Thorbecke Verlag, Ostfildern, pp 132–146Google Scholar
  101. Küssner M (2010) The late upper Palaeolithic in the catchment area of the River Saale—facts and considerations. Quartär 57:125–137Google Scholar
  102. Kwadijk JCJ (1991) Sensitivity of the river Rhine discharge to environmental change, a first tentative assessment. Earth Surf Proc Land 16(7):627–637Google Scholar
  103. Larsen LB, Vinther BM, Briffa KR, Melvin TM, Clausen HB, Jones PD, Siggaard-Andersen ML, Hammer CU, Eronen M, Grudd H, Gunnarson BE, Hantemirov RM, Naurzbaev MM, Nicolussi K (2008) New ice core evidence for a volcanic cause of the AD 536 dust veil. Geophys Res Lett 35(4):L04708Google Scholar
  104. Leesch D, Müller W, Nielsen E, Bullinger J (2012) The Magdalenian in Switzerland: re-colonization of a newly accessible landscape. Quat Int 272–273:191–208Google Scholar
  105. Leroy SAG (2006) From natural hazard to environmental catastrophe: past and present. Quat Int 158:4–12Google Scholar
  106. Litt T, Schmincke H-U, Frechen M, Schlüchter C (2008) Quaternary. In: McCann T (ed) The geology of Central Europe—Mesozoic and Cenozoic, vol 2. Geological Society of London, London, pp 1287–1340Google Scholar
  107. Loew S (2009) Korrespondenzanalyse und Behausungsstrukturen. Siedlungsplatzanalyse des Federmesserfundplatzes Rüsselsheim 122 (Kr. Groß-Gerau, Hessen). Archäologisches Korrespondenzblatt 39:309–324Google Scholar
  108. Lorenz D (2013) The diversity of resilience: contributions from a social science perspective. Nat Hazards 67(1):7–24Google Scholar
  109. Lowe JJ, Rasmussen SO, Björck S, Hoek WZ, Steffensen JP, Walker MJC, Yu ZC (2008) Synchronisation of palaeoenvironmental events in the North Atlantic region during the last termination: a revised protocol recommended by the INTIMATE group. Quat Sci Rev 27(1–2):6–17Google Scholar
  110. Löwenborg D (2012) An iron age shock doctrine—did the AD 536–537 event trigger large-scale social changes in the Mälaren valley area? J Archaeol Anc Hist 4:1–29Google Scholar
  111. Lund KA, Benediktsson K (2011) Inhabiting a risky earth: the Eyjafjallajökull eruption in 2010 and its impacts. Anthropol Today 27(1):6–9Google Scholar
  112. Mace R, Holden CJ (2005) A phylogenetic approach to cultural evolution. Trends Ecol Evol 20(3):116–121Google Scholar
  113. Mann CJ (2003) Observational research methods. Research design II: cohort, cross sectional, and case-control studies. Emerg Med J 20(1):54–60Google Scholar
  114. Mason BG, Pyle DM, Oppenheimer C (2004) The size and frequency of the largest explosive eruptions on Earth. B Volcanol 66(8):735–748Google Scholar
  115. Mastrolorenzo G, Petrone P, Pappalardo L, Sheridan MF (2006) The Avellino 3780-year-BP catastrophe as a worst-case scenario for a future eruption at Vesuvius. Proc Nat Acad Sci USA 103(12):4366–4370Google Scholar
  116. Mathiassen T (1946) En senglacial Boplads ved Bromme. Aarbøger for nordisk Oldkyndighed og Historie 1946:121–197Google Scholar
  117. Mauch C, Pfister C (eds) (2009) Natural disasters, cultural responses: case studies toward a global environmental history. Lexington Books, LanhamGoogle Scholar
  118. McCormick M, Dutton PE, Mayewski PA (2007) Volcanoes and the climate forcing of Carolingian Europe, AD 750–950. Speculum 82:865–895Google Scholar
  119. McCoy FW, Heiken G (eds) (2000) Volcanic hazards and disasters in human antiquity. Geophysical monographs no. 139. Geological Society of America, BoulderGoogle Scholar
  120. McGuire WJ, Griffiths DR, Hancock PL, Stewart IS (eds) (2000) The archaeology of geological catastrophes. Geological society special publication no. 171. Geological Society, LondonGoogle Scholar
  121. Mehringer PJ, Sarna-Wojcicki AM, Wollwage LK, Sheets P (2005) Age and extent of the Ilopango TBJ tephra inferred from a Holocene chronostratigraphic reference section, Lago de Yojoa, Honduras. Quat Res 63(2):199–205Google Scholar
  122. Meischner D, Grüger E (2008) Entstehung des Erdfallsees Jues in Herzberg am Harz vor 12.916 Jahren. In: Röhling H-G, Zellmer H (eds) Geo Top 2008 “Landschaften lesen lernen”. 12. Internationale Jahrestagung der Fachsektion GeoTop der Deutschen Gesellschaft für Geowissenschaften, 30. April-4. Mai 2008 in Königslutter im Geopark Harz, Braunschweiger Land, Ostfalen. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, Heft 56. Deutsche Gesellschaft für Geowissenschaften, Hannover, p 19Google Scholar
  123. Merkt J, Müller H (1999) Varve chronology and palynology of the Lateglacial in Northwest Germany from lacustrine sediments of Hamelsee in Lower Saxony. Quat Int 61:41–59Google Scholar
  124. Michel-Kerjan E (2012) How resiliant is your country? Nature 491(7425):497Google Scholar
  125. Mitchell P (2008) Practising archaeology at a time of climatic catastrophe. Antiquity 82(318):1093–1103Google Scholar
  126. Morgan MS (2013) Nature’s experiments and natural experiments in the social sciences. Philos Soc Sci 43(3):341–357Google Scholar
  127. Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238Google Scholar
  128. Nielsen EH (2009) Paläolithikum und Mesolithikum in der Zentralschweiz. Mensch und Umwelt zwischen 17′000 und 5500 v. Chr. Archäologische Schriften Luzern 13. Kantonaler Lehrmittelverlag, LuzernGoogle Scholar
  129. November V (2008) Spatiality of risk. Environ Plann A 40(7):1523–1527Google Scholar
  130. Nowell DAG, Jones MC, Pyle DM (2006) Episodic quaternary volcanism in France and Germany. J Quat Sci 21(6):645–675Google Scholar
  131. O’Keefe P, Westgate K, Wisner B (1976) Taking the naturalness out of natural disasters. Nature 260:566–567Google Scholar
  132. Oliver-Smith A (1996) Anthropological research on hazards and disasters. Annu Rev Anthropol 25:303–328Google Scholar
  133. Oliver-Smith A (1999) “What is a disaster?” Anthropological perspectives on a persistent question. In: Oliver-Smith A, Hoffman SM (eds) The angry earth. Disaster in anthropological perspective. Routledge, London, pp 18–34Google Scholar
  134. Oliver-Smith A (2004) Theorizing vulnerability in a globalized world: a political ecological perspective. In: Hilhorst T, Frerks G, Bankoff G (eds) Mapping vulnerability: disasters, development, and people. Earthscan Publications, London, pp 10–24Google Scholar
  135. Olshansky R, Hopkins L, Johnson L (2012) Disaster and recovery: processes compressed in time. Nat Hazards Rev 13(3):173–178Google Scholar
  136. Oppenheimer C (2003) Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Prog Phys Geog 27(2):230–259Google Scholar
  137. Oppenheimer C (2011) Eruptions that shook the world. Cambridge University Press, CambridgeGoogle Scholar
  138. Ort MH, Elson MD, Anderson KC, Duffield WA, Samples TL (2008) Variable effects of cinder-cone eruptions on prehistoric agrarian human populations in the American southwest. J Volcanol Geoth Res 176(3):363–376Google Scholar
  139. Pagel M, Meade A (2005) Bayesian estimation of correlated evolution across cultures: a case study of marriage systems and wealth transfer at marriage. In: Mace R, Holden CJ, Shennan SJ (eds) The evolution of cultural diversity. A phylogenetic approach. UCL Press, London, pp 235–256Google Scholar
  140. Park C, Schmincke H-U (1997) Lake formation and catastrophic dam burst during the late Pleistocene Laacher See Eruption (Germany). Naturwissenschaften 84:521–525Google Scholar
  141. Park C, Schmincke H-U (2009) Apokalypse im rheintal. Spektrum der Wissenschaften 2009(2):78–87Google Scholar
  142. Pasda C (2001) Das Knochengerät vom spätpaläolithischen Fundplatz Kleinlieskow in der Niederlausitz. Ein Essay zum steinzeitlichen Angelhaken. In: Gehlen B, Heinen M, Tillmann A (eds) Zeit-Räume. Gedenkschrift für Wolfgang Taute. Verlag Rudolf Habelt GmbH, Bonn, pp 397–408Google Scholar
  143. Pedersen R (2010) Eyjafjallajökull. Vulkanen der lammede Europa. Gyldendal, CopenhagenGoogle Scholar
  144. Pettitt P (2008) The British Upper Palaeolithic. In: Pollard J (ed) Prehistoric Britain. Blackwell, Oxford, pp 18–57Google Scholar
  145. Pettitt P, White MJ (2012) The British Palaeolithic. Human societies at the edge of the pleistocene world. Routledge Archaeology of Northern Europe. Routledge, LondonGoogle Scholar
  146. Pfister C (2009) Learning from nature-induced disasters: theoretical considerations and case studies from Western Europe. In: Mauch C, Pfister C (eds) Natural disasters, cultural responses: case studies toward a global environmental history. Lexington Books, Lanham, pp 17–40Google Scholar
  147. Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of Volcanoes. Academic Press, San Diego, pp 263–270Google Scholar
  148. Quarantelli EL (1995) What is a disaster? Int J Mass Emerg Disasters 13(3):221–229Google Scholar
  149. Raynal J-P, Alborelivadie C, Piperno M (eds) (2002) Hommes et volcans. De l’éruption à l’objet. Les dossiers de l’Archéo-Logis, Clermond-FerrandGoogle Scholar
  150. Renfrew C (1979) The eruption of Thera and Minoan Crete. In: Sheets PD, Grayson DK (eds) Volcanic activity and human ecology. Academic Press, London, pp 565–585Google Scholar
  151. Riede F (2007) Der Ausbruch des Laacher See-Vulkans vor 12.920 Jahren und urgeschichtlicher Kulturwandel am Ende des Alleröd. Eine neue Hypothese zum Ursprung der Bromme Kultur und des Perstunien. Mitteilungen der Gesellschaft für Urgeschichte 16:25–54Google Scholar
  152. Riede F (2008) The Laacher See-eruption (12,920 BP) and material culture change at the end of the Allerød in Northern Europe. J Archaeol Sci 35(3):591–599Google Scholar
  153. Riede F (2009) The loss and re-introduction of bow-and-arrow technology: a case study from the Southern Scandinavian Late Palaeolithic. Lithic Technol 34(1):27–45Google Scholar
  154. Riede F (2011a) Steps towards operationalising an evolutionary archaeological definition of culture. In: Roberts BW, Vander Linden M (eds) Investigating archaeological cultures. Material culture, variability, and transmission. Springer, New York, pp 245–270Google Scholar
  155. Riede F (2011b) Adaptation and niche construction in human prehistory: a case study from the southern Scandinavian Late Glacial. Philos Trans R Soc B 366:793–808Google Scholar
  156. Riede F (2012a) A possible Brommian shaft-smoother from the site of Møllehøje, north-western Denmark. Mesolithic Miscellany 22(1):10–18Google Scholar
  157. Riede F (2012b) Tephrochronologische Nachuntersuchungen am endpaläolithischen Fundplatz Rothenkirchen, Kreis Fulda. Führte der Ausbruch des Laacher See-Vulkans (10966 v. Chr.) zu einer anhaltenden Siedlungslücke in Hessen? Jahrbuch des nassauischen Vereins für Naturkunde 133:47–68Google Scholar
  158. Riede F (in press) The resettlement of northern Europe. In: Cummings V, Jordan P, Zvelebil M (eds) Oxford handbook of the archaeology and anthropology of hunter-gatherers. Oxford University Press, Oxford, pp xx–xx Google Scholar
  159. Riede F, Bazely O (2009) Testing the ‘Laacher See hypothesis’: a health hazard perspective. J Archaeol Sci 36(3):675–683Google Scholar
  160. Riede F, Edinborough K (2012) Bayesian radiocarbon models for the cultural transition during the Allerød in southern Scandinavia. J Archaeol Sci 39(3):744–756Google Scholar
  161. Riede F, Thastrup M (2013) Tephra, tephrochronology and archaeology—a (re-)view from Northern Europe. Heritage Sci 1(1):15Google Scholar
  162. Riede F, Wheeler JM (2009) Testing the ‘Laacher See hypothesis’: tephra as dental abrasive. J Archaeol Sci 36(10):2384–2391Google Scholar
  163. Riede F, Bazely O, Newton AJ, Lane CS (2011) A Laacher See-eruption supplement to Tephrabase: investigating distal tephra fallout dynamics. Quat Int 246(1–2):134–144Google Scholar
  164. Ritter JRR, Jordan M, Christensen UR, Achauer U (2001) A mantle plume below the Eifel volcanic fields, Germany. Earth Planet Sci Lett 186:7–14Google Scholar
  165. Roberts BW, Vander Linden M (eds) (2011) Investigating archaeological cultures. Material culture, variability, and transmission. Springer, New YorkGoogle Scholar
  166. Rolett B, Diamond J (2004) Environmental predictors of pre-European deforestation on Pacific islands. Nature 431(7007):443–446Google Scholar
  167. Scarre C (ed) (2005) The human past. World prehistory and the development of human societies. Thames & Hudson, LondonGoogle Scholar
  168. Schenk GJ (ed) (2009) Katastrophen. Vom Untergang Pompejis bis zum Klimawandel. Jan Thorbecke Verlag, OstfildernGoogle Scholar
  169. Schmincke H-U (2006) Environmental impacts of the Lateglacial eruption of the Laacher See Volcano, 12.900 cal BP. In: von Koenigswald W, Litt T (eds) 150 years of Neanderthal discoveries, vol 2. Terra Nostra, Bonn, pp 149–153Google Scholar
  170. Schmincke H-U, Hinzen K-G (2008) Vulkanismus und Erdbeben. In: Felgentreff C, Glade T (eds) Naturrisiken und Sozialkatastrophen. Spektrum Akademischer Verlag, Berlin, pp 141–150Google Scholar
  171. Schmincke H-U, Park C, Harms E (1999) Evolution and environmental impacts of the eruption of Laacher See Volcano (Germany) 12,900 a BP. Quat Int 61:61–72Google Scholar
  172. Schreiber UC (2006) Die Flucht der Ameisen. Piper, München/ZürichGoogle Scholar
  173. Schwendler RH (2012) Diversity in social organization across Magdalenian Western Europe ca. 17–12,000 BP. Quat Int 272–273:333–353Google Scholar
  174. Self S (2006) The effects and consequences of very large explosive volcanic eruptions. Philos Trans R Soc A 364(1845):2073–2097Google Scholar
  175. Sheets PD (1979) Maya recovery from volcanic disasters—Ilopango and Ceren. Archaeology 32(3):32–42Google Scholar
  176. Sheets PD (1981) Volcanoes and the Maya. Nat Hist 90(8):32–41Google Scholar
  177. Sheets PD (1999) The effects of explosive volcanism on ancient egalitarian, ranked, and stratified societies in Middle America. In: Oliver-Smith A, Hoffman SM (eds) The angry earth. Disaster in anthropological perspective. Routledge, London, pp 36–58Google Scholar
  178. Sheets PD (2001) The effects of explosive volcanism on simple to complex societies in ancient Middle America. In: Markgraf V (ed) Interhemispheric climate linkages. Academic Press, London, pp 73–86Google Scholar
  179. Sheets PD (2007) People and Volcanoes in the Zapotitan Valley, El Slavador. In: Grattan J, Torrence R (eds) Living under the shadow. Cultural impacts of volcanic eruptions. Left Coast Press, Walnut Creek, pp 67–89Google Scholar
  180. Sheets PD (2008) Armageddon to the Garden of Eden: explosive volcanic eruptions and societal resilience in ancient Middle America. In: Sandweiss D, Quilter J (eds) El Niño, catastrophism, and culture change in ancient America. Harvard University Press, Cambridge, pp 167–186Google Scholar
  181. Sheets PD (2012) Responses to explosive volcanic eruptions by small to complex societies in ancient Mexico and Central America. In: Cooper J, Sheets PD (eds) Surviving sudden environmental change. University of Colorado Press, Boulder, pp 43–63Google Scholar
  182. Small C, Naumann T (2001) The global distribution of human population and recent volcanism. Environ Hazards 3(3/4):93–109Google Scholar
  183. Sørensen L (2010) The Laacher See volcanic eruption. Challenging the idea of cultural disruption. Acta Archaeol-Den 81(1):270–281Google Scholar
  184. Stapert D (2000) The Late Palaeolithic in the northern Netherlands. In: Valentin B, Bodu P, Christensen M (eds) L’Europe centrale et septentrionale au Tardiglaciaire. Actes de la Table-Ronde internationale de Nemours, 13–16 mai 1997. Mémoires du Musée de Préhistoire d’Ile de France, Paris, pp 175–195Google Scholar
  185. Stommel H, Stommel E (1983) Volcano weather. The story of 1816, the year without a summer. Seven Seas Press, New PortGoogle Scholar
  186. Street M, Jöris O, Turner E (2012) Magdalenian settlement in the German Rhineland—an update. Quat Int 272–273:231–250Google Scholar
  187. Stump D (2013) On Applied Archaeology, Indigenous Knowledge, and the Usable Past. Curr Anthropol 54(3):268–298Google Scholar
  188. Textor C, Sachs PM, Graf H-F, Hansteen TH (2003) The 12 900 years BP Laacher See eruption: estimation of volatile yields and simulation of their fate in the plume. Geol Soc Spec Publ 213(1):307–328Google Scholar
  189. Toft B, Reynolds S (1994) Learning from disasters. A management approach. Butterworth-Heinemann, OxfordGoogle Scholar
  190. Torrence R, Grattan J (eds) (2002) Natural disasters and cultural change. Routledge, LondonGoogle Scholar
  191. Van de Noort R (2011) Conceptualising climate change archaeology. Antiquity 85(329):1039–1048Google Scholar
  192. van den Bogaard P (1995) 40Ar/39Ar ages of sanidine phenocrysts from Laacher See Tephra (12,900 year BP): chronostratigraphic and petrological significance. Earth Planet Sci Lett 133(1–2):163–174Google Scholar
  193. van den Bogaard P, Schmincke H-U (1984) The eruptive center of the late quaternary Laacher See Tephra. Geol Rundsch 73(3):933–980Google Scholar
  194. van den Bogaard P, Schmincke H-U (1985) Laacher See Tephra: a widespread isochronous late quaternary tephra layer in Central and Northern Europe. Geol Soc Am Bull 96(12):1554–1571Google Scholar
  195. van den Bogaard P, Schmincke H-U, Freundt A, Park C (1990) Evolution of complex plinian eruptions: the Late Quaternary Laacher See case history. In: Hardy DA, Keller J, Galanopoulos VP, Flemming NC, Druitt TH (eds) Thera and the Aegean world III. Earth Sciences, vol 2. The Thera Foundation, London, pp 463–483Google Scholar
  196. van Raden UJ, Colombaroli D, Gilli A, Schwander J, Bernasconi SM, van Leeuwen J, Leuenberger M, Eicher U (in press) High-resolution late-glacial chronology for the Gerzensee lake record (Switzerland): δ18O correlation between a Gerzensee-stack and NGRIP. Palaeogeography, Palaeoclimatology, Palaeoecology Google Scholar
  197. Veil S, Breest K, Grootes PM, Nadeau M-J, Hüls M (2012) A 14 000-year-old amber elk and the origins of northern European art. Antiquity 86(333):660–673Google Scholar
  198. Vitaliano DB (2007) Geomythology: geological origins of myths and legends. Geol Soc Spec Publ 273(1):1–7Google Scholar
  199. Warburton D, Heinemeier J, Friedrich WL (eds) (2009) Time’s up! Dating the Minoan eruption of Santorini. Acts of the Minoan Eruption Chronology Workshop, Sandbjerg November 2007. Monographs of the Danish Institute at Athens, vol 10. Aarhus University Press, ÅrhusGoogle Scholar
  200. Weniger G-C (1989) The Magdalenian in Western Central Europe: settlement pattern and regionality. J World Prehist 3(3):323–372Google Scholar
  201. White GF (1974) Natural hazards research: concepts, methods and policy implications. In: White GF (ed) Natural hazards: local, national, global. Oxford University Press, Oxford, pp 3–16Google Scholar
  202. Wisner B (2010) Climate change and cultural diversity. Int Soc Sci J 61(199):131–140Google Scholar
  203. Wisner B, Blaikie P, Cannon T, Davis I (2004) At risk. Natural hazards, people’s vulnerability and disasters, 2nd edn. Routledge, LondonGoogle Scholar
  204. Witham CS (2005) Volcanic disasters and incidents: a new database. J Volcanol Geoth Res 148(3–4):191–233Google Scholar
  205. Wörner G, Schmincke H-U (1984a) Mineralogical and Chemical Zonation of the Laacher See Tephra Sequence (East Eifel, W. Germany). J Petrol 25(4):805–835Google Scholar
  206. Wörner G, Schmincke H-U (1984b) Petrogenesis of the Zoned Laacher See Tephra. J Petrol 25(4):836–851Google Scholar
  207. Yoon D (2012) Assessment of social vulnerability to natural disasters: a comparative study. Nat Hazards 63(2):823–843Google Scholar
  208. Zhu H, Bozdag E, Peter D, Tromp J (2012) Structure of the European upper mantle revealed by adjoint tomography. Nat Geosci 5(7):493–498Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Laboratory for Past Disaster Science (LaPaDiS), Department of Culture and Society (Materials, Culture and Heritage)Aarhus UniversityHøjbjergDenmark

Personalised recommendations