Skip to main content

Tsunamis from the Arica-Tocopilla source region and their effects on ports of Central Chile


The last great earthquake in northern Chile took place in 1877, and the ensuing tsunami affected not only that region but also Central Chile. For example, the Bay of Concepción, which is located 1,500 km south of the tsunami source, experienced an inundation height of around 3 m. Ports are important in the Chilean economy, due to the fact that a large percentage of Chilean exports (excluding copper) use ports located in Central Chile. With this in mind, the authors investigated the potential effect of an 1877-like tsunami on the main ports of Central Chile. To do this, the dispersive wave model Non-hydrostatic Evolution of Ocean WAVEs was used. In addition, the first tsunami forecast model for Talcahuano, inside the Bay of Concepción, was developed by means of numerical simulation of several events of different moment magnitudes. The results showed that most of the important ports (Valparaiso, San Antonio, San Vicente and Coronel) had inundation heights on the order of just 1 m, while inundation levels in Talcahuano reached up to 3.5 m. The forecast model for Talcahuano uses only earthquake magnitude, focal depth and tide level to determine tsunami inundation heights. In addition, the tsunami arrival time was computed to be 3 h, and the maximum tsunami amplitude takes place at 4 h and 45 min after the earthquake.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26


  • Aránguiz R, Belmonte A (2012) The Effect of a tsunami generated in the northern Chile on the Bay of Concepción (in Spanish). XXV Latin American Congress of Hydraulics, San José, Costa Rica, 9–12 September 2012

  • Aránguiz R, Villagrán M, Eyzaguirre G (2011) “The use of trees as a tsunami natural barrier for Concepción, Chile”. J Coast Res S.I. 64 (Proceeding of the 11th international coastal symposium) 450–454

  • Barrientos S (1991) Large events, seismic gaps, and stress diffusion in Central Chile. In: Tectonic of the southern Central Andes K-J, Reutter E, Scheuber, Wigger PJ (eds) 111–117

  • Barrientos S (2007) Earthquakes in Chile. In: Moreno T, Gibbons W (eds) The geology of Chile. Geological Society, London, pp 263–288

    Google Scholar 

  • Barrientos S (2010) “Updated Technical Report May 27th, 2010-Cauquenes Earthquake February 27of 2010” (In Spanish). Servicio sismológico de la Universidad de Chile, [disponible en línea en]

  • Belmonte A (1997) Análisis del contacto sismogénico interplaca a lo largo de Chile. Thesis of Civil Engineering and MSc in Geophysics (in Spanish). Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 161 p (Advisor: Comte D) 

  • Bilek SL, Ruff LJ (2002) Analysis of the 23 June 2001 Mw = 8.4 Peru underthrusting earthquake and its aftershocks. Geophys Res Lett 29(20):1960. doi:10.1029/2002GL015543

    Article  Google Scholar 

  • Chlieh M, Perfettini H, Tavera H, Avouac J-P, Remy D, Nocquet J-M, Rolandone F, Bondoux F, Gabalda G, Bonvalot S (2011) Interseismic coupling potential along the Central Andes subduction zone. J Geophy Res 116:B12405. doi:10.1029/2010JB008166

    Article  Google Scholar 

  • Comte D, Pardo M (1991) Reappraisal of great historical earthquakes in the northern Chile and southern Peru seismic gap. Nat Hazards 4:23–44. doi:1.1007/BF00126557

    Article  Google Scholar 

  • Fritz H, Petroff C, Catalán P, Cienfuegos R, Winckler P, Kalligeris N, Weiss R, Barrientos S, Meneses G, Valderas-Bermejo C, Ebelig C, Papadopaulos A, Contreras M, Almar R, Dominguez J, Synolakis C (2011) Field survey on the 27, February 2010 Chilean tsunami. Pure Appl Geophys 168:1989–2010

    Article  Google Scholar 

  • Gica E, Spillane MC, Titov VV, Chamberlin CD, Newman JC (2008) Development of the forecast propagation database for NOAA’s short-term inundation forecast for tsunamis (SIFT)”. NOAA Technical Memorandum OAR PMEL-139

  • Grilli ST, Ioualalen M, Asavanant J, Shi F, Kirby J, Watts P (2007) Source constraints and model simulation of the December 26, 2004 Indian Ocean Tsunami. J Waterw Port Coast Ocean Eng. ASCE 133(6):414–428

    Google Scholar 

  • Guibourg S, Heinrich P, Roche R (1997) Numerical modeling of the 1995 Chilean tsunami. Impact on French Polynesia. Geo Res Letters 24(7):775–778

    Google Scholar 

  • Haiyun W, Xiaxin T (2003) Relationships between moment magnitude and fault parameters: theoretical and semi-empirical relationships. Earthq Eng Eng Vib 2(2):201–211

    Google Scholar 

  • Hayes G (2010) Finite fault model, updated result of the feb 27, 2010 Mw 8,8 Maule Chile Earthquake. National Earthquake Information Center (NEIC) of United States Geological Survey 2010. [available on]

  • Madariaga R (1998) Sismicidad en Chile. Física de la tierra 10:221–258

    Google Scholar 

  • Martínez C, Rojas O, Aránguiz R, Belmonte A, Altamirano A, Flores P (2012) Tsunami risk in Caleta Tubul, Biobio Region: extreme scenarios and territorial transformation post-earthquake. Revista de Geografía Norte Grande 53:85–106

    Article  Google Scholar 

  • Okada Y (1985) Surface deformation of shear and tensile faults in a half-space. Bull Seismol Soc Am 75(4):1135–1154

    Google Scholar 

  • Okal EA, Borrero JC, Synolakis CE (2006) Evaluation of Tsunami risk from regional earthquakes at Pisco, Peru. Bull Seismol Soc Am 96(5):1634–1648. doi:10.1785/0120050158

    Article  Google Scholar 

  • Otsuka K, Imamura F, Satoh K, Hosaka M (2010) A trial calculation of effect on disaster reduction at fishing ports using input-output analysis. Report of the Japanese Institute of Technology on Fishing Ports, Grounds and Communities [available on]

  • Ozaki T (2011) Outline of the 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0): Tsunami warnings/advisories and observations. Earth Planets Space 63:827–830

    Article  Google Scholar 

  • Papazachos BC, Scordilis EM, Panagiotopoulos DG, Papazachos CB, Karakaisis GF (2004) Global relations between seismic fault parameters and moment magnitude of Earthquakes. Bulletin of the Geological Society of Greece vol, XXXVI 2004

    Google Scholar 

  • Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T TIDE. Comput Geosci 28(2002):929–937

    Article  Google Scholar 

  • Peyrat R, Madariaga E, Buforn J, Campos G, Asch G, Vilotte JP (2010) Kinematic rupture process of the 2007 Tocopilla earthquake and its main aftershocks from teleseismic and strong-motion data. Geophys J Int 182:1411–1430

    Article  Google Scholar 

  • Ruegg JC, Olcay M, Lazo D (2001) Co-post- and pre-seismic displacement associated with the Mw = 8.4 southern Peru earthquake of 23 June 2001 from continuous GPS measurements. Seismol Res Lett 72:673–678

    Article  Google Scholar 

  • Soloviev SL, Go Ch N (1975) A catalogue of tsunamis on the Eastern shore of the Pacific Ocean, Moscow, “Nauka” Publishing House, p 202

  • Vakov A (1996) Relationships between earthquake magnitude, source geometry and slip mechanism. Tecnophysics 261:97–113

    Article  Google Scholar 

  • Vidal-Gormaz F (1878) Algunos datos relativos al terremoto de 9 de mayo de 1877, i a las ajitaciones del mar i de los otros fenómenos ocurridos sobre las costas occidentales de Sud-América”. En: Anuario hidrográfico de la marina de Chile no:4. Imprenta nacional; Santiago, Chile. p 458–480

  • Well D, Coppersmith K (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull Seismolog Soc Am 84(4):974–1002

    Google Scholar 

  • Wyss M (1979) Estimating maximum expectable magnitude of earthquakes from fault dimensions. Geology 7:336–340

    Article  Google Scholar 

  • Yamazaki Y, Cheung KF (2011) Shelf resonance and impact of near-field tsunami generated by the 2010 Chile earthquake. Geophys Res Lett\ 38(12):L12605. doi:10.1029/2011GL047508

    Google Scholar 

  • Yamazaki Y, Kowalik Z, Cheung KF (2009) Depth-integrated, non-hydrostatic model for wave breaking and runup. Int J Numer Methods Fluids 61(5):473–497

    Article  Google Scholar 

  • Yamazaki Y, Cheung KF, Kowalik Z (2011) Depth-integrated, non-hydrostatic model with grid nesting for tsunami generation, propagation, and run-up. Int J Numer Methods Fluids 67(12):2081–2107

    Article  Google Scholar 

Download references


The authors would like to thank the Maritime and Port Research Center (CIMP) and the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA) for providing valuable topography data. The authors also like to thank the Research Department (Dirección de Investigación) of Universidad Católica de la Ssma Concepción for partial funding of this research as well as the two reviewers for the careful reviews and comments to improve the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Rafael Aránguiz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aránguiz, R., Shibayama, T. & Yamazaki, Y. Tsunamis from the Arica-Tocopilla source region and their effects on ports of Central Chile. Nat Hazards 71, 175–202 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • 1877 Iquique tsunami
  • Central Chile
  • Shelf resonance
  • Tsunami forecast model
  • Bay of Concepción