Skip to main content
Log in

Leaking behavior of shield tunnels under the Huangpu River of Shanghai with induced hazards

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The Quaternary deposits in Shanghai primarily consists of a phreatic aquifer group (Aq0) and five artesian aquifers (AqI–AqV) that are separated by six aquitards (AdI–AdVI). In the basin of the Huangpu River, the first artesian aquifer (AqI) is connected to the second artesian aquifer (AqII), forming a 50-m-thick artesian aquifer with a very high groundwater level. The highway tunnels under the Huangpu River of Shanghai are constructed at a maximum depth up to 45 m, within the artesian aquifer. These tunnels are lined with precast reinforced concrete segments without a second lining. Under high water pressure, it is difficult for the single shell linings to achieve water tightness. Different degrees of groundwater leakage have been observed in road tunnels under the Huangpu River. The tunnels constructed before the 1990s have had very serious groundwater leakage (e.g., >1 L/m2/day), and the recently constructed tunnels have leaked less than 0.1 L/m2/day. The factors influencing groundwater leakage include depth below groundwater level, differential settlement of the tunnel, and applied waterproof technologies. The increase in depth leads to a significant increase in groundwater leakage. The differential settlement causes gaps to open and offset between segments, as well as cracking of segments, which can also induce groundwater leakage. According to the analysis of recorded data, the number of leaking points tends to increase with the curvature of the settlement curve. In addition, inappropriate waterproofing materials and poor waterproofing design will also lead to groundwater leakage. Groundwater leakage causes deterioration of the structure, aging of the installations in the tunnels (e.g., facilities and pavements), as well as discomfort for users of the tunnels and adverse environmental impacts. Furthermore, groundwater leakage also causes structural deformation of the tunnel itself, leading to further leakage and hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bai Y, Liu GS, Zheng YL (2011) Recent development of underground engineering in Shanghai. In: Phoon KK, Goh SH, Shen RF, Zhu HH (eds) Advances in ground technology and geo-information. Geotechnical Society of Singapore, Singapore, pp 15–24

    Google Scholar 

  • BSI British Standards (1997) Concrete: guide to specifying concrete (BS 5328-1). BSI, Milton Keynes

    Google Scholar 

  • Caro S, Masad E, Bhasin A, Little DN (2008) Moisture susceptibility of asphalt mixtures, Part 1: mechanisms. Int J Pavement Eng 9(2):81–98. doi:10.1080/10298430701792128

    Article  Google Scholar 

  • Celestin TB, Giambastiani M, Bortolucci AA (2001) Water inflows in tunnels: back-analysis and role of different lining systems. In: Proceedings of the World Tunnel Congress 2001, ITA, Milan, vol 2, pp 547–554

  • Chen L, Du YJ, Liu SY, Jin F (2011) Evaluation of hydration properties of cement-stabilized lead-contaminated soils using electrical resistivity measurement. J Hazard Toxic Radioact Waste 15(4):312–320. doi:10.1061/(ASCE)HZ.1944-8376.0000073

    Article  Google Scholar 

  • Chen JJ, Zhang LY, Zhang JF, Zhu YF, Wang JH (2013) Field tests, modification, and application of deep soil mixing method in soft clay. J Geotech Geoenviron Eng 139(1):24–34. doi:10.1061/(ASCE)GT.1943-5606.0000746

    Article  Google Scholar 

  • Cheng D, Little DN, Lytton RL, Holste JC (2003) Moisture damage evaluation of asphalt mixtures by considering both moisture diffusion and repeated-load conditions. Transport Res Rec 1832:42–49

    Article  Google Scholar 

  • Du YJ, Jiang NJ, Shen SL, Jin F (2012) Experimental investigation of influence of acid rain on leaching and hydraulic characteristics of cement-based solidified/stabilized lead contaminated clay. J Hazard Mater 225:195–201. doi:10.1016/j.jhazmat.2012.04.072

    Article  Google Scholar 

  • El Tani M (2003) Circular tunnel in a semi-infinite aquifer. Tunn Undergr Space Technol 18(1):49–55. doi:10.1016/S0886-7798(02)00102-5

    Article  Google Scholar 

  • Franzén T, Celestino TB (2002) Lining of the tunnels under groundwater pressure. In: Proceedings of the World Tunnel Congress 2002, ITA, Sydney, 1 CD

  • Haack A (1991) Water leakages in subsurface facilities: required watertightness, contractual matters, and methods of redevelopment. Tunn Undergr Space Technol Incorporating Trenchless 6(3):273–282

    Article  Google Scholar 

  • Horpibulsuk S, Phojan W, Suddeepong A, Chinkulkijniwat A, Liu MD (2012) Strength development in blended cement admixed saline clay. Appl Clay Sci 55(2012):44–52. doi:10.1016/j.clay.2011.10.003

    Article  Google Scholar 

  • Huang J, Han J (2009) 3D coupled mechanical and hydraulic modeling of a geosynthetic-reinforced deep mixed column-supported embankment. Geotext Geomembr 27(4):272–280. doi:10.1016/j.geotexmem.2009.01.001

    Article  Google Scholar 

  • ITA WG Research (2000) Guidelines for the design of shield tunnel lining. Tunn Undergr Space Technol 15(3):303–331. doi:10.1016/S0886-7798(00)00058-4

  • Kampala A, Horpibulsuk S, Chinkullijniwat A, Shen SL (2013) Engineering properties of recycled Calcium Carbide Residue stabilized clay as fill and pavement materials. Construct Build Mater 46(2013):203–210. doi:10.1016/j.conbuildmat.2013.04.037

    Article  Google Scholar 

  • Kolymbas D, Wagner P (2007) Groundwater ingress to tunnels-the exact analytical solution. Tunn Undergr Space Technol 22(1):23–27. doi:10.1016/j.tust.2006.02.001

    Article  Google Scholar 

  • Liao SM, Peng FL, Shen SL (2008) Analysis of shearing effect on tunnel induced by load transfer along longitudinal direction. Tunn Undergr Space Technol 23(4):421–430. doi:10.1016/j.tust.2007.07.001

    Article  Google Scholar 

  • Liao SM, Liu JH, Wang RL, Li ZM (2009) Shield tunneling and environment protection in Shanghai soft ground. Tunn Undergr Space Technol 24(4):454–465. doi:10.1016/j.tust.2008.12.005

    Article  Google Scholar 

  • Mair RJ (2008) Tunnelling and geotechnics: new horizons. Géotechnique 58(9):695–736. doi:10.1680/geot.2008.58.9.695

    Article  Google Scholar 

  • Mair RJ, Taylor RN (1997) Bored tunneling in the urban environment (State-of-the-art report and theme lecture). In: Proceedings of the fourteenth international conference on soil mechanics and foundation engineering, Hamburg, Balkema, vol 4, pp 2353–2380

  • Peng FL, Wang HL, Tan Y, Xu ZL, Li YL (2011) Field measurements and finite-element method simulation of a tunnel shaft constructed by pneumatic caisson method in Shanghai soft ground. J Geotech Geoenviron Eng 137(5):516–524. doi:10.1061/(ASCE)GT.1943-5606.0000460

    Article  Google Scholar 

  • Shanghai Geological Environmental Atlas Editorial Board (SGEAEB) (2002) Shanghai geological environmental atlas (SGEA). Geology Press, Beijing (in Chinese)

    Google Scholar 

  • Shanghai Municipal Engineering Administration Bureau (SMEAB) (2005) Technical specification of maintenance for tunnel (SZ-43-2005). SMEAB, Shanghai

    Google Scholar 

  • Shanghai Pujiang Bridge and Tunnel Operations Management Co., Ltd. (SPBT) (2009) Testing report on present state and serviceability of east Yan’an road river-crossing tunnel (in Chinese)

  • Shen SL, Han J, Du YJ (2008) Deep mixing induced property changes in surrounding sensitive marine clays. J Geotech Geoenviron Eng 134(6):845–854. doi:10.1061/(ASCE)1090-0241(2008)134:6(845

    Article  Google Scholar 

  • Shen SL, Xu YS (2011) Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can Geotech J 48(9):1378–1392. doi:10.1139/t11-049

    Article  Google Scholar 

  • Shen SL, Wang ZF, Horpibulsuk S, Kim YH (2013a) Jet grouting with a newly developed technology: the Twin-Jet method. Eng Geol 152(1):87–95. doi:10.1016/j.enggeo.2012.10.018

    Article  Google Scholar 

  • Shen SL, Wang ZF, Sun WJ, Wang LB, Horpibulsuk S (2013b) A field trial of horizontal jet grouting using the composite-pipe method in the soft deposits of Shanghai. Tunn Undergr Space Technol 35(2013):142–151. doi:10.1016/j.tust.2013.01.003

    Article  Google Scholar 

  • Shen SL, Wang ZF, Yang J, Ho EC (2013c) Generalized approach for prediction of jet grout column diameter. J Geotech Geoenviron Eng. doi:10.1061/(ASCE)GT.1943-5606.0000932

    Google Scholar 

  • Shin JH, Addenbrooke TI, Potts DM (2002) A numerical study of the effect of groundwater movement on long-term tunnel behavior. Géotechnique 52(6):391–403. doi:10.1680/geot.52.6.391.38740

    Article  Google Scholar 

  • Shin JH, Kim SH, Shin YS (2012) Long-term mechanical and hydraulic interaction and leakage evaluation of segmented tunnels. Soils Found 52(1):38–48. doi:10.1016/j.sandf.2012.01.011

    Article  Google Scholar 

  • Soga K, Au SKA, Jafari MR, Bolton MD (2004) Laboratory investigation of multiple grout injections into clay. Géotechnique 54(2):81–90. doi:10.1680/geot.54.2.81.36333

    Article  Google Scholar 

  • Sukmak P, Horpibulsuk S, Shen SL (2013) Strength development in clay-fly ash geopolymer. Construct Build Mater 40(2013):566–574. doi:10.1016/j.conbuildmat

    Article  Google Scholar 

  • Tan Y, Li MW (2011) Measured performance of a 26 m deep top-down excavation in downtown Shanghai. Can Geotech J 48(5):704–719. doi:10.1139/t10-100

    Article  Google Scholar 

  • Tan Y, Wei B (2012a) Observed behavior of a long and deep excavation constructed by cut-and-cover technique in Shanghai soft clay. J Geotech Geoenviron Eng 138(1):69–88. doi:10.1061/(ASCE)GT.1943-5606.0000553

    Article  Google Scholar 

  • Tan Y, Wei B (2012b) Performance of an over-excavated metro station and facilities nearby. J Perform Constr Facil 26(3):241–254. doi:10.1061/(ASCE)CF.1943-5509.0000231

    Article  Google Scholar 

  • Tan J, Chao YJ, Van Zee JW, Li X, Wang X, Yang M (2008) Assessment of mechanical properties of fluoroelastomer and EPDM in a simulated PEM fuel cell environment by microindentation test. Mat Sci Eng A Struct 496(1–2):464–470. doi:10.1016/j.msea.2008.05.052

    Article  Google Scholar 

  • Wang ZF, Shen SL, Ho CE, Kim YH (2013) Investigation of field installation effects of horizontal Twin-Jet grouting in Shanghai soft soil deposits. Can Geotech J 50(3):288–297. doi:10.1139/cgj-2012-0199

    Article  Google Scholar 

  • Wongsaroj J, Soga K, Mair RJ (2007) Modelling of long-term ground response to tunnelling under St James’s Park, London. Géotechnique 57(1):75–90. doi:10.1680/geot.2007.57.1.75

    Article  Google Scholar 

  • Wu HN, Xu YS, Shen SL, Chai JC (2011) Long-term settlement behavior of ground around shield tunnel due to leakage of groundwater in soft deposit of Shanghai. Front Archit Civ Eng China 5(2):194–198. doi:10.1007/s11709-011-0105-y

    Article  Google Scholar 

  • Xu YS, Shen SL, Cai ZY, Zhou GY (2008) The state of land subsidence and prediction activities due to groundwater withdrawal in China. Nat Hazards 45(1):123–135. doi:10.1061/40867(199)5

    Article  Google Scholar 

  • Xu YS, Shen SL, Du YJ (2009) Geological and hydrogeological environment in Shanghai with geohazards to construction and maintenance of infrastructures. Eng Geol 109(3–4):241–254. doi:10.1016/j.enggeo.2009.08.009

    Article  Google Scholar 

  • Xu YS, Ma L, Du YJ, Shen SL (2012a) Analysis on urbanization induced land subsidence in Shanghai. Nat Hazards 63(2):1255–1267. doi:10.1007/s11069-012-0220-7

    Article  Google Scholar 

  • Xu YS, Ma L, Shen SL, Sun WJ (2012b) Evaluation of land subsidence by considering underground structures penetrated into aquifers in Shanghai. Hydrogeol J 20(8):1623–1634. doi:10.1007/s10040-012-0892-9

    Article  Google Scholar 

  • Xu YS, Huang RQ, Han J, Shen SL (2013a) Evaluation of allowable withdrawn volume of groundwater based on observed data. Nat Hazards 67(4):513–522. doi:10.1007/s11069-013-0576-3

    Article  Google Scholar 

  • Xu YS, Shen SL, Du YJ, Chai JC, Horpibulsuk S (2013b) Modelling the cutoff behavior of underground structure in multi-aquifer-aquitard groundwater system. Nat Hazards 66(2):731–748. doi:10.1007/s11069-012-0512-y

    Article  Google Scholar 

  • Yin ZY, Karstunen M, Chang CS, Koskinen M, Lojander M (2011) Modeling time-dependent behaviour of soft sensitive clay. J Geotech Geoenviron Eng 137(11):1103–1113. doi:10.1061/(ASCE)GT.1943-5606.0000527

    Article  Google Scholar 

  • Yin ZY, Xu Q, Chang CS (2012) Modeling cyclic behavior of clay by micromechanical approach. J Eng Mech. doi:10.1061/(ASCE)EM.1943-7889.0000516

    Google Scholar 

  • Yin ZY, Chang CS (2013) Stress-dilatancy behavior for sand under loading and unloading conditions. Int J Numer Anal Methods 37(8):855–870. doi:10.1002/nag.1125

    Article  Google Scholar 

  • Zhou N, Yuan Y (2009) Correlation of Cross-river Shield Tunnel Between Longitudinal Deformation Curvature and Segment Leakage. J Tongji Univ (Nat Sci) 37(11):1446–1451 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

The research work described herein was funded by the National Nature Science Foundation of China (NSFC) (Grant Nos. 41072209 and 41102175) and is also funded by the Open Foundation Project of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Grant No. SKLGP2012K029). Financial supports are also from Shanghai Jiao Tong University under the grant of the Starting Funding and New Star Plan (type B) of young faculty members. These financial supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shui-Long Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, HN., Huang, RQ., Sun, WJ. et al. Leaking behavior of shield tunnels under the Huangpu River of Shanghai with induced hazards. Nat Hazards 70, 1115–1132 (2014). https://doi.org/10.1007/s11069-013-0863-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-013-0863-z

Keywords

Navigation