Advertisement

Natural Hazards

, Volume 74, Issue 1, pp 25–53 | Cite as

Atmospheric processes responsible for generation of the 2008 Boothbay meteotsunami

  • I. Vilibić
  • K. Horvath
  • N. Strelec Mahović
  • S. Monserrat
  • M. Marcos
  • Á. Amores
  • I. Fine
Original Paper

Abstract

We investigated the atmospheric processes and physics that were active during a tsunami-like event hitting Boothbay Harbor area (Maine, USA) on 28 October 2008. The data collected by tide gauges, ground and sounding stations and meteo–ocean buoys in the area were analyzed, together with satellite and radar images. The atmospheric processes were reproduced by the weather research and forecasting model, verified by in situ and remote sensing data. A cold front moved over the area at the time of the event, with embedded convective clouds detected by satellite and radar data and the internal gravity waves (IGWs) detected by radar and reproduced by the model at the rear of the frontal precipitation band. According to the model, the IGWs that passed over Boothbay Harbor generated strong ground air-pressure oscillations reaching 2.5 hPa/3 min. The IGWs were ducted towards the coast without significant dissipation, propagating in a stable near-surface layer capped by an instability at approximately 3.5 km height and satisfying all conditions for their maintenance over larger areas. The intensity, speed and direction of the IGWs were favourable for generation of a meteotsunami wave along the Gulf of Maine shelf. Operational observation systems were not capable of sufficiently capturing the ground disturbance due to a too coarse sampling rate, while the numerical model was found to be a useful tool in eventual future detection and warning systems.

Keywords

Meteotsunami Meteo and ocean data Mesoscale atmospheric modelling Atmospheric gravity waves U.S. East Coast 

Notes

Acknowledgments

We would like to thank NOAA and the Gulf of Maine Research Institute, in particular John Jensenius and Linda Mangum, who provided us with the data observed at GoMOOS/NERACOOS buoys during the event (http://neracoos.org) and Kristopher Bedka from Science Systems and Applications Inc., NASA Langley Research Center, for assisting with GOES satellite data. Tide gauge data were obtained from the NOAA CO-OPS website at http://opendap.co-ops.nos.noaa.gov/axis/webservices, while vertical sounding data were obtained from the University of Wyoming website at http://weather.uwyo.edu/upperair/sounding.html. Croatian Meteorological and Hydrological Service accounted for the provision of computational resources for numerical simulations. Comments raised by two anonymous reviewers, the Editor, Jadranka Šepić and Paul Whitmore are appreciated. This work was performed within the NOAA/NWS project ‘Towards a meteotsunami warning system along the U.S. coastline (TMEWS)’, Award No. NA11NWS4670005.

References

  1. Belušić D, Strelec-Mahović N (2009) Detecting and following atmospheric disturbances with a potential to generate meteotsunamis in the Adriatic. Phys Chem Earth 34:918–927CrossRefGoogle Scholar
  2. Belušić D, Grisogono B, Klaić ZB (2007) Atmospheric origin of the devastating coupled air-sea event in the east Adriatic. J Geophys Res 112:D17111. doi: 10.1029/2006JD008204 CrossRefGoogle Scholar
  3. Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Wea Rev 129:569–585CrossRefGoogle Scholar
  4. Cheng CM, Alpers W (2010) Investigation of trapped atmospheric gravity waves over the South China Sea using Envisat Synthetic Aperture Radar images. Int J Remote Sens 31:4725–4742CrossRefGoogle Scholar
  5. Churchill DD, Houston SH, Bond NA (1995) The Daytona Beach wave of 3–4 July 1992: a shallow water gravity wave forced by a propagating squall line. Bull Am Meteorol Soc 76:21–32CrossRefGoogle Scholar
  6. De Jong MPC, Battjes JA (2004) Low-frequency sea waves generated by atmospheric convection cells. J Geophys Res 109:C01011. doi: 10.1029/2003JC001931 Google Scholar
  7. Dragani WC, Mazio CA, Nuñez MN (2002) Sea level oscillations in coastal waters of the Buenos Aires province, Argentina. Cont Shelf Res 22:779–790CrossRefGoogle Scholar
  8. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107CrossRefGoogle Scholar
  9. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 108(D22):8851. doi: 10.1029/2002JD003296 CrossRefGoogle Scholar
  10. Haslett SK, Bryant EA (2009) Meteorological tsunami in Southern Britain: an historical review. Geogr Rev 99:146–163CrossRefGoogle Scholar
  11. Hibiya T, Kajiura K (1982) Origin of the Abiki phenomenon (a kind of seiche) in Nagasaki Bay. J Oceanogr Soc Jpn 38:172–182CrossRefGoogle Scholar
  12. Horvath K, Koracin D, Vellore RK, Jiang J, Belu R (2012) Sub-kilometer dynamical downscaling of near-surface winds in complex terrain using WRF and MM5 mesoscale models. J Geophys Res 117:D11. doi: 10.1029/2012JD017432 Google Scholar
  13. Janjić ZI (1996) The surface layer in the NCEP Eta model. 11th conference on NWP, Norfolk, VA, Am Meteorol Soc, pp 354–355Google Scholar
  14. Janjić ZI (2001) Nonsingular implementation of the Mellor-Yamada Level 2.5 scheme in the NCEP meso model. NCEP Office Note No. 437, 61 ppGoogle Scholar
  15. Jansà A, Monserrat S, Gomis D (2007) The rissaga of 15 June 2006 in Ciutadella (Menorca), a meteorological tsunami. Adv Geosci 12:1–4CrossRefGoogle Scholar
  16. Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181CrossRefGoogle Scholar
  17. Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: The Kain-Fritsch scheme. In: Emanuel KA, Raymond DJ (eds) The representation of cumulus convection in numerical models. Am Meteorol Soc, Boston, pp 165–170Google Scholar
  18. Kidder SQ, Vonder Haar TH (1995) Satellite meteorology: an introduction. Academic Press, San Diego, p 466Google Scholar
  19. Laprise R (1992) The Euler equations of motion with hydrostatic-pressure as an independent variable. Mon Wea Rev 120:197–208CrossRefGoogle Scholar
  20. Lin Y-L (2007) Mesoscale dynamics. Cambridge University Press, Cambridge, p 630CrossRefGoogle Scholar
  21. Lindzen RS (1974) Wave-CISK in the tropics. J Atmos Sci 31:156–179CrossRefGoogle Scholar
  22. Lindzen RS, Tung K–K (1976) Banded convective activity and ducted gravity waves. Mon Wea Rev 104:1602–1617CrossRefGoogle Scholar
  23. Mecking JV, Fogarty CT, Greatbatch RJ, Sheng J, Mercer D (2000) Using atmospheric model output to simulate the meteorological tsunami response to Tropical Storm Helene (2000). J Geophys Res 114:C10005. doi: 10.1029/2009JC005290 CrossRefGoogle Scholar
  24. Mellor GL, Yamada T (1974) Hierarchy of turbulent closure models for planetary boundary-layers. J Atmos Sci 31:1791–1806CrossRefGoogle Scholar
  25. Mellor GL, Yamada T (1982) Development of a turbulent closure-model for geophysical fluid problems. Rev Geophys 20:851–875CrossRefGoogle Scholar
  26. Mercer D, Sheng J, Greatbatch RJ, Bobanović J (2002) Barotropic waves generated by storms moving rapidly over shallow water. J Geophys Res 107(C10):3152. doi: 10.1029/2001JC001140 CrossRefGoogle Scholar
  27. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682. doi: 10.1029/97JD00237 CrossRefGoogle Scholar
  28. Monserrat S, Thorpe AJ (1992) Gravity-wave observation using an array of microbarographs in the Balearic Islands. Q J R Meteorol Soc 118:259–282Google Scholar
  29. Monserrat S, Thorpe AJ (1996) Use of ducting theory in an observed case of gravity waves. J Atmos Sci 53:1724–1736CrossRefGoogle Scholar
  30. Monserrat S, Ramis C, Thorpe AJ (1991) Large-amplitude pressure oscillations in the Western Mediterranean. Geophys Res Lett 18:183–186CrossRefGoogle Scholar
  31. Monserrat S, Rabinovich AB, Casas B (1998) On the reconstruction of the transfer function for atmospherically generated seiches. Geophys Res Lett 25:2197–2200CrossRefGoogle Scholar
  32. Monserrat S, Vilibić I, Rabinovich AB (2006) Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band. Nat Hazards Earth Syst Sci 6:1035–1051CrossRefGoogle Scholar
  33. Nappo CJ (2002) An Introduction to Atmospheric Gravity Waves. Academic Press, San Diego, p 276Google Scholar
  34. Nikolkina I, Didenkulova I (2012) Catalogue of rogue waves reported in media in 2006-2010. Nat Hazards 61:989–1006CrossRefGoogle Scholar
  35. Orlić M, Belušić D, Janeković I, Pasarić M (2010) Fresh evidence relating the great Adriatic surge of 21 June 1978 to mesoscale atmospheric forcing. J Geophys Res 115:C06011. doi: 10.1029/2009JC005777 Google Scholar
  36. Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci 28:929–937CrossRefGoogle Scholar
  37. Paxton CH, Sobien DA (1998) Resonant interaction between an atmospheric gravity wave and shallow water wave along Florida’s west coast. Bull Am Meteorol Soc 79:2727–2732CrossRefGoogle Scholar
  38. Proudman J (1929) The effects on the sea of changes in atmospheric pressure. Geophys Suppl Mon Notices R Astron Soc 2(4):197–209CrossRefGoogle Scholar
  39. Rabinovich AB (2009) Seiches and harbour oscillations. In: Kim YC (ed) Handbook of Coastal and Ocean Engineering. World Scientific Publ, Singapore, pp 193–236CrossRefGoogle Scholar
  40. Reisner J, Rasmussen RM, Bruintjes RT (1998) Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Q J R Meteor Soc 124B:1071–1107CrossRefGoogle Scholar
  41. Renault L, Vizoso G, Jansá A, Wilkin J, Tintoré J (2011) Toward the predictability of meteotsunamis in the Balearic Sea using regional nested atmosphere and ocean models. Geophys Res Lett 38:L10601. doi: 10.1029/2011GL047361 CrossRefGoogle Scholar
  42. Sallenger AH Jr, List JH, Gelfenbaum G, Stumpf RP, Hansen M (1995) Large wave at Daytona Beach, Florida, explained as a squall-line surge. J Coastal Res 11:1383–1388Google Scholar
  43. Schroeder G, Schlünzen KH (2009) Numerical dispersion of gravity waves. Mon Wea Rev 137:4344–4354CrossRefGoogle Scholar
  44. Šepić J, Vilibić I (2011) The development and implementation of a real-time meteotsunami warning network for the Adriatic Sea. Nat Hazards Earth Syst Sci 11:83–91CrossRefGoogle Scholar
  45. Šepić J, Vilibić I, Belušić D (2009) The source of the 2007 Ist meteotsunami (Adriatic Sea). J Geophys Res 114:C03016. doi: 10.1029/2008JC005092 Google Scholar
  46. Šepić J, Vilibić I, Strelec Mahović N (2012) Northern Adriatic meteorological tsunamis: observations, link to the atmosphere, and predictability. J Geophys Res 117:C02002. doi: 10.1029/2011JC007608 Google Scholar
  47. Skamarock WC (2004) Evaluating mesoscale NWP models using kinetic energy spectra. Mon Wea Rev 132:3019–3032CrossRefGoogle Scholar
  48. Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465–3485CrossRefGoogle Scholar
  49. Tanaka K (2010) Atmospheric pressure-wave bands around a cold front resulted in a meteotsunami in the East China Sea in February 2009. Nat Hazards Earth Syst Sci 10:2599–2610CrossRefGoogle Scholar
  50. Thomson RE, Rabinovich AB, Krassovski MV (2007) Double jeopardy: concurrent arrival of the 2004 Sumatra tsunami and storm-generated waves on the Atlantic coast of the United States and Canada. Geophys Res Lett 34:L15607. doi: 10.1029/2007GL030685 CrossRefGoogle Scholar
  51. Thomson RE, Rabinovich AB, Fine IV, Sinnott DC, McCarthy A, Sutherland NAS, Neil LK (2009) Meteorological tsunamis on the coasts of British Columbia and Washington. Phys Chem Earth 34:971–988CrossRefGoogle Scholar
  52. Valachova M, Pucik T, Zak M (2011) Severe convective weather of the 15th August 2010. WDS’11 proceedings of contributed papers, part III, pp 72–77Google Scholar
  53. Vilibić I (2008) Numerical simulations of the Proudman resonance. Cont Shelf Res 28:574–581CrossRefGoogle Scholar
  54. Vilibić I, Šepić J (2009) Destructive meteotsunamis along the eastern Adriatic coast: overview. Phys Chem Earth 34:904–917CrossRefGoogle Scholar
  55. Vilibić I, Domijan N, Orlić M, Leder N, Pasarić M (2004) Resonant coupling of a traveling air pressure disturbance with the east Adriatic coastal waters. J Geophys Res 109:C10001. doi: 10.1029/2004JC002279 CrossRefGoogle Scholar
  56. Vilibić I, Šepić J, Ranguelov B, Strelec Mahović N, Tinti S (2010) Possible atmospheric origin of the 7 May 2007 western Black Sea shelf tsunami event. J Geophys Res 115:C07006. doi: 10.1029/2009JC005904 Google Scholar
  57. Yankovsky AE (2009) Large-scale edge waves generated by hurricane landfall. J Geophys Res 114:C03014. doi: 10.1029/2008JC005113 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • I. Vilibić
    • 1
  • K. Horvath
    • 2
  • N. Strelec Mahović
    • 2
  • S. Monserrat
    • 3
  • M. Marcos
    • 3
  • Á. Amores
    • 3
  • I. Fine
    • 4
  1. 1.Institute of Oceanography and FisheriesSplitCroatia
  2. 2.Meteorological and Hydrological ServiceZagrebCroatia
  3. 3.IMEDEA (CSIC-UIB)Palma de MallorcaSpain
  4. 4.Fisheries and Oceans Canada, Ocean Science DivisionInstitute of Ocean SciencesSidneyCanada

Personalised recommendations