Skip to main content
Log in

Aerosol particle behavior during Dust Storm and Diwali over an urban location in north western India

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

In this study, the aerosol behavior during two contradictory events, i.e., dust storm (DS) and Diwali (DW) has been studied over Jaipur. The aerosol particle number concentration shows distinct features between DS and DW events. The total ANC was found minimum during DS while maximum during DW. The 24 h mean of total ANC was 9.15 × 104 (±7.71 × 104) and 5.38 × 105 (±3.73 × 105 particles/l) during DS and DW, respectively. The total ANC increases from 7.78 × 104 to 5.32 × 105 and 3.52 × 105 to 1.70 × 106 particles/l in 24 h during DS and DW, respectively. In DS, the ANC in coarse mode (2 < particle diameter < 20 μm) is significantly high while in DW, the ANC in fine mode (0.3 < particle diameter < 2 μm) exhibits higher concentration. During dust episode, a significant change in ANC (3.0 × 103 to 1.12 × 105 particles/l) was observed for the particle of size range in 2.0–20 μm with a slight increase in particles number concentration (7.48 × 104 to 4.20 × 105 particles/l) in 0.3–2.0 μm range is also observed. During DS, the fine and coarse mode particles increased 4.61 and 36.44 times while during DW, it increased 3.83 and 0.95 times, respectively. The relatively high particle levels during DW are attributed for two reasons: local emissions due to burning of fire crackers and meteorological conditions, i.e., low wind speeds and low mixing-layer heights lead to relatively high particle concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baldasano JM, Valera E, Jiménez P (2003) Air quality data from large cities. Sci Total Environ 307:141–165

    Article  Google Scholar 

  • Buzorius G, Hämeri K, Pekkanen J, Kulmala M (1999) Spatial variation of aerosol number concentration in Helsinki city. Atmos Environ 33:553–565

    Article  Google Scholar 

  • Chun Y, Kim J, Choi JC, Boo KO, Oh SN, Lee M (2001) Characteristic number size distribution of aerosol during Asian dust period in Korea. Atmos Environ 35:2715–2721

    Article  Google Scholar 

  • Dey S, Tripathi SN, Singh RP, Holben BN (2004) Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin. J Geophys Res. doi:10.1029/2004JD004924

    Google Scholar 

  • Dockery DW, Pope C (1994) Acute respiratory effects of particulate air pollution. Annu Rev Public Health 15:107–132

    Article  Google Scholar 

  • Dockery DW, Pope CA III, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE (1993) An association between air pollution and mortality in six US cities. New Engl J Med 329:1753–1759

    Article  Google Scholar 

  • Dunn MJ, Jimenez JL, Baumgardner D, Castro T, Mc-Murry PH, Smith JN (2004) Measurements of Mexico City nano particle size distributions: observations of new particle formation and growth. J Geophys Lett. doi:10.1029/2004GL019483

    Google Scholar 

  • Faiz A, Sturm PJ (2000) New directions: air pollution and road traffic in developing countries. Atmos Environ 34(27):4745–4746

    Article  Google Scholar 

  • Hämeri K, Kulmala M, Aalto P, Leszczynski K, Visuri R, Hämekoski K (1996) The investigations of aerosol particle formation in urban background area in Helsinki. Atmos Res 41:281–298

    Article  Google Scholar 

  • Horvath H, Kasaharat M, Pesava P (1996) The size distribution and composition of the atmospheric aerosol at a rural and nearby urban location. J Aerosol Sci 27(3):417–435

    Article  Google Scholar 

  • Ketzel M, Wåhlin P, Kristensson A, Swietlicki E, Berkowicz R, Nielsen OJ, Palmgren F (2004) Particle size distribution and particle mass measurements at urban, near-city and rural level in the Copenhagen area and Southern Sweden. Atmos Chem Phys 4:281–292

    Article  Google Scholar 

  • Liu DY, Rutherford D, Kinsey M, Prather KA (1997) Real-time monitoring of pyrotechnically derived aerosol particles in the troposphere. Anal Chem 69:1808–1814

    Article  Google Scholar 

  • Liu S, Hu M, Wu Z, Wehner B, Wiedensohler A, Cheng Y (2008) Aerosol number size distribution and new particle formation at a rural/coastal site in Pearl River Delta (PRD) of China. Atmos Environ 42:6275–6283

    Article  Google Scholar 

  • Longley ID, Gallagher MW, Dorsey JR, Flynn M, Allan JD, Alfarra MR, Inglis D (2003) A case study of aerosol (4.6 nm < Dp < 10 nm) number and mass size distribution measurements in a busy street canyon in Manchester, UK. Atmos Environ 37(2):1563–1571

    Article  Google Scholar 

  • Mclain JH (1980) Pyrotechnics from the viewpoint of solid state chemistry. The Franklin Institute Press, Philadelphia, pp 155–157

    Google Scholar 

  • Mohan M, Payra S (2006) Relation between fog formation and accumulation mode aerosols in urban environment Delhi, India. Ind J Environ Prot 26(4, April 2006):294–300 (ISSN:0253-7141)

    Google Scholar 

  • Mönkkönen P, Koponen IK, Lehtinen KEJ, Hämeri K, Uma R, Kulmala M (2005) Measurements in a highly polluted Asian mega city observations of aerosol number size distribution, modal parameters and nucleation events. Atmos Chem Phys 5:57–66

    Article  Google Scholar 

  • Moreno T, Querol X, Alastuey A, Minguillón MC, Pey J, Rodriguez S, Miró JV, Felis C, Gibbons W (2007) Recreational atmospheric pollution episodes: inhalable metalliferous particles from firework displays. Atmos Environ 41:e913–e922. doi:10.1016/j.atmosenv.2006.09.019

    Article  Google Scholar 

  • Payra S, Verma S, Prakash D, Kumar P, Soni M, Holben B (2013) Aerosols properties during dust-storm episodes over Jaipur, Northwestern India, AIP conference proceedings (ISBN 978-0-7354-1152-4), vol. 1527, pp. 515–518. doi:http://dx.doi.org/10.1063/1.4803319

  • Pease PP, Tchakerian VP, Tindale NW (1998) Aerosols over the Arabian Sea: geochemistry and source areas for aeolian desert dust. J Arid Environ 39:477–496

    Article  Google Scholar 

  • Penttinen P, Timonen KL, Tiittanen P, Mirme A, Ruuskanen J, Pekkanen J (2001) Number concentration and size of particles in urban air: effects on spirometric lung function in adult asthmatic subjects. Environ Health Perspect 109:319–323

    Article  Google Scholar 

  • Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J (1997) Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 155:1376–1383

    Article  Google Scholar 

  • Pope CA (2000) Review: epidemiological basis for particulate air pollution health standards. Aerosol Sci Technol 32:4–14

    Article  Google Scholar 

  • Pope CA III, Dockery DW, Spengler JD, Raizenne ME (1991) Respiratory health and PM10 pollution—a daily time series analysis. Am Rev Respir Dis 44:668–674

    Article  Google Scholar 

  • Ravindra K, Mor S, Kaushik CP (2003) Short-term variation in air quality associated with firework events: a case study. J Environ Monit 5:260–264

    Article  Google Scholar 

  • Samet JM, Zeger SL, Dominici F, Curriero F, Coursac I, Dockery DW, Schwartz J, Zanobetti A (2000) The national morbidity, mortality, and air pollution study, Part II: morbidity and mortality from air pollution in the United States. Research report 94, Health Effects Institute, Cambridge, MA

  • Schwartz J, Slater D, Larson T, Pierson WE, Koenig JQ (1993) Particulate air pollution and hospital emergency visits for asthma in Seattle. Am Rev Respir Dis 147:826–831

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics. John Wiley & Sons Inc, New York

    Google Scholar 

  • Shi JP, Evans DE, Khan AA, Harrison RM (2001) Sources and concentration of nano particles (<10 nm in diameter) in the urban atmosphere. Atmos Environ 35:1193–1202

    Article  Google Scholar 

  • Sikka DR (1997) Desert climate and its dynamics. Curr Sci 72(1):35–46

    Google Scholar 

  • Stanier CO, Khlystov AY, Pandis SN (2004) Ambient aerosol size distributions and number concentrations measured during the Pittsburgh Air Quality Study (PAQS). Atmos Environ 38:3275–3284

    Article  Google Scholar 

  • Steinhauser G, Sterba JH, Foster M, Grass F, Bichler M (2008) Heavy metals from pyrotechnics in New Years Eve snow. Atmos Environ 42:e8616–e8622. doi:10.1016/j.atmosenv.2008.08.023

    Article  Google Scholar 

  • Tiwari S, Payra S, Mohan M, Verma S, Bisht S (2011) Visibility Degradation during foggy period due to anthropogenic urban aerosol at Delhi, India, atoms. Pollut Res 2(1):116–120. doi:10.5094/APR.2011.014

    Google Scholar 

  • Tyagi A, Singh OP, Singh SS, Kumar S (2012) Climate of Jaipur. Indian Meteorological Department, India

  • Väkevä M, Hämeri K, Kulmala M, Lahdes R, Ruuskanen J, Laitinen T (1999) Street level versus rooftop concentrations of submicron aerosol particles and gaseous pollutants in an urban street canyon. Atmos Environ 33:1385–1397

    Article  Google Scholar 

  • Verma S, Boucher O, Upadhyaya HC, Sharma OP (2006) Sulfate aerosols forcing: an estimate using a three-dimensional interactive chemistry scheme. Atmos Environ 40(40):7953–7962

    Article  Google Scholar 

  • Verma S, Boucher O, Reddy MS, Upadhyaya HC, Le Van P, Binkowski FS, Sharma OP (2012) Tropospheric distribution of sulphate aerosols mass and number concentration during INDOEX-IFP and its transport over the Indian Ocean: a GCM study. Atmos Chem Phys 12:6185–6196. doi:10.5194/acp-12-6185-2012

    Article  Google Scholar 

  • Verma S, Payra S, Gautam R, Prakash D, Soni M, Holben B, and Bell S (2013) Dust events and their influence on aerosol optical properties over Jaipur in North western India, Environmental Monitoring and Assessment (ISSN 0167-63690), Springer, EMAS-D-12-11425. doi:10.1007/s10661-013-3103-9)

  • Wang Y, Zhuang G, Xu C, An Z (2007) The air pollution caused by the burning of fireworks during the lantern festival in Beijing, China. Atmos Environ 41:417–431

    Article  Google Scholar 

  • Washington R, Todd M, Middleton NJ, Goudie AS (2003) Dust storm source as determined by the total ozone monitoring spectrometer and surface observations. Ann As Am Geogr 93:297–313

    Article  Google Scholar 

  • Wehner B, Birmili W, Gnauk T, Wiedensohler A (2002) Particle number size distributions in a street canyon and their transformation into the urban-air background: measurements and a simple model study. Atmos Environ 36:2215–2223

    Google Scholar 

  • Wehner B, Wiedensohler A, Heintzenberg J (2000) Submicrometer aerosol size distributions and mass concentration of the millennium fireworks 2000 in Leipzig, Germany. J Aerosol Sci 31(12):1489–1493

    Article  Google Scholar 

  • Wiedensohler A, Wehner B, Birmili W (2004) Aerosol number concentrations and size distributions at mountain-rural, urban-influenced rural, and urban-background sites in Germany. J Aerosol Med. doi:10.1089/089426802320282365

    Google Scholar 

  • Williams PI, Choularton TW, Gallagher M, Coe WH, Bower KN (1998) Results of monitoring ultrafine, fine and accumulation mode particles above an urban canyon within the city of Manchester. J Aerosol Sci 29:593–594

    Article  Google Scholar 

  • Woo KS, Chen DR, Pui DYH, McMurry PH (2001) Measurements of Atlanta Aerosol Size Distributions: observations of ultra fine particle events. Aerosol Sci Technol 34:75–87

    Google Scholar 

  • Zhang M, Wang X, Chen J, Cheng T, Wang T, Yang X, Gong G, Geng F, Chen C (2010) Physical characterization of aerosol particles during the Chinese New Year’s firework events. Atmos Environ 44:e5191–e5198. doi:10.1016/j.atmosenv.2010.08.048

    Article  Google Scholar 

Download references

Acknowledgments

We greatly acknowledge and thank SERB, Department of Science and Technology (DST), Govt. of India for financial support under research project SR/S4/AS:39/2009. The first author acknowledges support from DST in the form of research fellowship for PhD research. We are thankful to Dr K. R. Khicher for the support during data collection. The authors also thankfully acknowledge the Executive Director Prof Purnendu Ghosh, BISR for resources to carry out the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swagata Payra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prakash, D., Payra, S., Verma, S. et al. Aerosol particle behavior during Dust Storm and Diwali over an urban location in north western India. Nat Hazards 69, 1767–1779 (2013). https://doi.org/10.1007/s11069-013-0780-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-013-0780-1

Keywords

Navigation