Skip to main content
Log in

Probabilistic assessment of tephra fallout hazard at Changbaishan volcano, Northeast China

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Tephra fallout is an important type of hazard caused by volcanic eruption, and is also one of the main hazards at Changbaishan volcano, Northeast China. Numerical simulation is an effective approach to assess the dispersion of tephra fallout. According to the theory of dispersion model, we developed a simple and practical diffusion program that can be run on a personal computer. The input parameters for the simulation of tephra fallout from the Millennium Eruption of Changbaishan volcano, such as the size, density and shape of the tephra, the bulk volume and column height, the diffusion parameter P(z), wind direction and intensity, were obtained by field investigation and laboratory analysis. The simulated results in the intermediate scope when the parameter β > 0.3 are in good agreement with the results from measurement in situ, indicating that the model is reliable and the parameters used in the model are reasonable. We carried out more than 20,000 tephra fallout simulations using a statistical dataset of wind profiles which are obtained from China Meteorological Data Sharing Service System (CMDSSS). Tephra fallout hazard probability maps related to high- and low- magnitude eruption scenarios in Changbaishan volcano, are constructed for several tephra thickness thresholds, such as 70, 20, 10 and 1 cm. The results from this study can give support to the risk mitigation plans in Changbaishan area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Armienti P, Macedonio G, Pareschi MT (1988) A numerical-model for simulation of tephra transport and deposition: applications to May 18, 1980, Mount-St-Helens eruption. J Geophys Res 93(B6):6463–6476

    Article  Google Scholar 

  • Barberi F, Macedonio G, Pareschi MT, Santacroce R (1990) Mapping the tephra fallout risk: an example from Vesuvius, Italy. Nature 344:142–144. doi:10.1038/344142a0

    Article  Google Scholar 

  • Baxter PJ (1999) Impacts of eruptions on human health. In: Siggurdson H (ed) Encyclopaedia of Volcanoes. Academic Press, New York, pp 1035–1043

    Google Scholar 

  • Baxter PJ, Ing R, Falk H, French J, Stein GF, Bernstein RS, Merchant JA, Allard J (1981) Mount St. Helens Eruptions, May 18 to June 12, 1980: an overview of the acute health impact. J Am Med As 246(22):2585–2589

    Article  Google Scholar 

  • Baxter PJ, Bernstein RS, Buist AS (1986) Health effects of volcanoes: an approach to evaluating the health effects of an environmental hazard. Am J Public Health 76(Supplement):84–90

    Article  Google Scholar 

  • Baxter PJ, Bonadonna C, Dupree R, Hards VL, Kohn SC, Murphy MD, Nichols A, Nicholson RA, Norton G, Searl A, Sparks AJ, Vickers BP (1999) Cristobalite in volcanic ash of the Soufriere Hills Volcano, Montserrat, British West Indies. Science 283:1142–1145

    Article  Google Scholar 

  • Biass S, Bonadonna C (2013) A fast GIS-based risk assessment for tephra fallout : the example of otopaxi volcano, Ecuador—Part I : hazard assessment. Nat Hazards 65(1):477–495

    Article  Google Scholar 

  • Biass S, Frischknecht C, Bonadonna C (2012) A fast GIS-based risk assessment for tephra fallout : the example of Cotopaxi volcano, Ecuador—Part II : vulnerability and risk assessment. Nat Hazards 64(1):615–639

    Article  Google Scholar 

  • Bonadonna C, Phillips JC (2003) Sedimentation from strong volcanic plumes. J Geophys Res 108(B7):2340

    Google Scholar 

  • Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81(3–4):173–187

    Article  Google Scholar 

  • Bonadonna C, Macedonio G, Sparks RSJ (2002) Numerical model of tephra fallout with dome collapses and Vulcanian explosions: application to hazard assessment on Montserrat. Mem Geol Soc Lond 21:517–537

    Article  Google Scholar 

  • Bonadonna C, Connor CB, Houghton BF, Connor L, Byrne M, Laing A, Hincks TK (2005) Probabilistic modeling of tephra dispersion: hazard assessment of a multi-phase rhyolitic eruption at Tarawera New Zealand. J Geophys Res 110:B03203. doi:10.1029/2003JB002896

    Google Scholar 

  • Bonasia R, Capra L, Costa A, Macedonio G, Saucedo R (2011) Tephra fallout hazard assessment for a Plinian eruption scenario at Volcán de Colima (Mexico). J Volcanol Geotherm Res 203:12–22

    Article  Google Scholar 

  • Bonasia R, Costa A, Folch A, Macedonio G, Capra L (2012) Numerical simulation of tephra transport and deposition of the 1982 El Chichón eruption and implications for hazard assessment. J Volcanol Geotherm Res 231–232:39–49. doi:10.1016/j.jvolgeores.2012.04.006

    Article  Google Scholar 

  • Bursik MI, Carey SN, Sparks RSJ (1992) A gravity current model for the May 18, 1980 Mount St Helens Plume. Geophys Res Lett 19:1663–1666

    Article  Google Scholar 

  • Carey S, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18,1980 eruption of Mount St Helens. J Geophys Res 87:7061–7072

    Article  Google Scholar 

  • Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48(2–3):109–125. doi:10.1007/BF01046546

    Article  Google Scholar 

  • Coltelli M, Miraglia L, Scollo S (2008) Characterization of shape and terminal velocity of tephra particles erupted during the 2002 eruption of Etna volcano Italy. Bull Volcanol 70(9):1103–1112. doi:10.1007/s00445-007-0192-8

    Article  Google Scholar 

  • Connor CB, Hill BE, Winfrey B, Winfrey B, Franklin NM, La Femina PC (2001) Estimation of Volcanic Hazards from Tephra Fallout. Nat Hazards Rev 2(1):33–42

    Article  Google Scholar 

  • Costa A, Macedonio G, Folch A (2006) A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet Sci Lett 241:634–647

    Article  Google Scholar 

  • Costa A, Dell’Erba F, Di Vito MA (2009) Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy). Bull Volcanol 71:259–273

    Article  Google Scholar 

  • Dellino P, La Volpe L (1996) Image processing analysis in reconstructing fragmentation and transportation mechanisms of pyroclatic deposits. The case of Monte Pilato-Rocche Rosse eruptions, Lipari (Aeolian Islands, Italy). J Volcanol Geotherm Res 71:13–29

    Article  Google Scholar 

  • Dellino P, Mele D, Bonasia R, Braia G, Volpe LL, Sulpizio R (2005) The analysis of the influence of pumice shape on its terminal velocity. Geophys Res Lett 32:1–4

    Google Scholar 

  • Edward WW, Thomas CP (1995) Volcanic-Hazard Zonation for Mount St. Helens, Washington. US Geol Surv Open-File Rep 95–497

  • Fan Q, Sui J, Sun Q, Li N, Wang T (2005) Preliminary research of magma mixing and explosive mechanism of the Millennium eruption of Tianchi volcano. Acta Petrol Sin 21(6):1703–1708 (in Chinese with English abstract)

    Google Scholar 

  • Fedele FG, Giaccio B, Isaia R, Orsi G (2003) The Campanian Ignimbrite eruption, Heinrich Event 4, and Palaeolithic change in Europe: a high-resolution investigation. In: Robock A, Oppenheimer C (eds) Volcanism and the Earth’s atmosphere. Am Geophys Un, Geophys Monog Ser 139. American Geophysical Union, Washington, pp 301–325

    Chapter  Google Scholar 

  • Gill J, Dunlap C, MeCurry M (1992) Large-volume, Mid-latitude, C1-richVolcanic Eruption during 600-1000 AD, Baitoushan, China.American Geophysical Union Chapman Conference on Climate, Volcanism and Global Change (Abstract) 18(3):23–27

  • Glaze LS, Self S (1991) Ashfall dispersal for the 16 September 1986, eruption of Lascer, Chile, calculated by a turbulent diffusion model. Geophys Res Lett 18(7):1237–1240

    Article  Google Scholar 

  • Guo Z, Liu J, Sui S, Liu Q, He H, Ni Y (2002) The mass estimation of volatile emission during 1199–1200 AD eruption of Baitoushan volcano and its significance. Sci China Ser D 45(6):530–539

    Article  Google Scholar 

  • Heffter JL, Stunder BJB (1993) Volcanic ash forecast transport and dispersion (VAFTAD) model. Weather Forecast 8:533–541

    Article  Google Scholar 

  • Hoblitt RP, Walder JS, Driedger CL, Scott KM, Pringle PT, Vallance JW (1998) Volcano Hazards from Mount Rainier, Washington. US Geol Surv Open-File Rep 98–428

  • Horn S, Schmincke HU (2000) Volatile emission during the eruption of Baitoushan Volcano (China/North Korea) ca. 969 AD. Bull Volcanol 61(8):537–555

    Google Scholar 

  • Liu R (1998) The Recent Eruption of Tianchi Volcano. Science Press, Beijing (in Chinese), Changbaishan

    Google Scholar 

  • Liu R (2000) The active volcanoes in China. Seismological Press, Beijing, pp 17–31 (in Chinese)

    Google Scholar 

  • Liu X, Xiang T (1997) Cenozoic volcanoes and Pyroclastic deposits in Northeastern China resources and hazards. Jilin University Publishing House, Changchun, pp 83–106 142 (in Chinese)

    Google Scholar 

  • Liu R, Li J, Wei H, Xu D, Zhen Z (1992) Volcano at Tianchi lake, Changbaishan MT.—A modern volcano with potential danger of eruption. Acta Geophys Sinica 35(5):661–665 (in Chinese with English abstract)

    Google Scholar 

  • Macedonio G, Pareschi MT, Santacroce R (1988) A numerical simulation of the Plinian fall phase of 79 AD eruption of Vesuvius. J Geophys Res-Solid 93(B12):14817–14827

    Article  Google Scholar 

  • Macedonio G, Costa A, Longo A (2005) A computer model for volcanic ash fallout and assessment of subsequent hazard. Comput Geosci 31:837–845

    Article  Google Scholar 

  • Macedonio G, Costa A, Folch A (2008) Ash fallout scenarios at Vesuvius: numerical simulations and implications for hazard. J Volcanol Geotherm Res 178(3):66–377

    Google Scholar 

  • Machida H, Arai F (1983) Extensive ash falls in and around the Sea of Japan from large late Quaternary eruptions. J Volcanol Geotherm Res 18:151–164

    Article  Google Scholar 

  • Mastrolorenzo G, Pappalardo L, Troise C, Panizza A, De Natale G (2008) Probabilistic tephra hazard maps for the Neapolitan area: quantitative volcanological study of Campi Flegrei eruptions. J Geophys Res 113:B07203. doi:10.1029/2007JB004954

    Google Scholar 

  • Mills MJ (2000) Volcanic aerosol and global atmospheric effects. In: Sigurdsson H, Houghton BF, McNutt SR et al (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 931–943

    Google Scholar 

  • Nanayama F, Satake K, Furukawa R, Shimokawa K, Atwater BF, Shigeno K, Yamaki S (2003) Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature 424:660–663

    Article  Google Scholar 

  • Oppenheimer C (ed) (2011) Eruptions that shook the world. Cambridge Univ Press, Cambridge. doi:10.1017/CBO9780511978012

    Google Scholar 

  • Pfeiffer T, Costa A, Macedonio G (2005) A model for the numerical simulation of tephra fall deposits. J Volcanol Geotherm Res 140:273–294

    Article  Google Scholar 

  • Rampino MR, Self S (2000) Volcanism and biotic extinctions. In: Sigurdsson H, Houghton BF, McNutt SR et al (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 1083–1091

    Google Scholar 

  • Rhoades DA, Dowrick DJ, Wilson CJN (2002) Volcanic Hazard in New Zealand: scaling and attenuation relations for Tephra fall deposits from Taupo Volcano. Nat Hazards 26:147–174

    Article  Google Scholar 

  • Searcy C, Dean K, Stringer W (1998) PUFF: a high resolution volcanic ash tracking model. J Volcanol Geotherm Res 80:1–16

    Article  Google Scholar 

  • Sparks RSJ, Wilson L, Sigurdsson H (1981) The pyroclastic deposits of the 1875 eruption of Askja Iceland, Philos. Trans R Soc London 229:241–273

    Article  Google Scholar 

  • Sulpizio R, Folch A, Costa A, Scaini C, Dellino P (2012) Hazard assessment of far-range volcanic ash dispersal from a violent Strombolian eruption at Somma-Vesuvius volcano, Naples, Italy: implications on civil aviation. Bull Volcanol 74:2205–2218

    Article  Google Scholar 

  • Suzuki T (1983) A theoretical model for dispersion of tephra. In: Shimozuru D, Yokoyama I (eds) Arc Volcanism: Physics and Tectonics. Terra Scientific Publishing Company, Tokyo, pp 95–113

    Google Scholar 

  • Walker GPL (1980) The Taupo pumice: product of the most powerful known (ultraplinian) eruption? J Volcanol Geotherm Res 8:69–94

    Article  Google Scholar 

  • Wei H (2010) Magma up-moving process within the magma prism beneath the Changbaishan volcanoes. Earth Sci Front 17(1):011–023 (in Chinese with English abstract)

    Google Scholar 

  • Wei H, Sparke RSJ, Liu R, Fan Q, Wang Y, Hong H, Zhang H, Chen H, Jiang C, Dong J, Zheng Y, Pan Y (2003) Three active volcanoes in China and their hazards. J Asian Earth Sci 21:515–526

    Article  Google Scholar 

  • Wei H, Wang Y, Jin J, Gao L, Yun S, Jin B (2007) Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. Lithos 96:315–324

    Article  Google Scholar 

  • Wu J, Ming Y, Zhang H (2005) Seismic activity at the Changbaishan Tianchi volcano in the summer of 2002. Chinese J Geophys 48(3):621–628 (in Chinese with English abstract)

    Google Scholar 

  • Wu J, Ming Y, Zhang H, Liu G, Fang L, Su W, Wang W (2007) Earthquake swarm activity in Changbaishan Tianchi volcano. Chin J Geophys 50(4):1089–1096 (in Chinese with English abstract)

    Article  Google Scholar 

  • Xu J, Liu G, Wu J, Ming Y, Wang Q, Cui D, Shangguan Z, Pan B, Lin X, Liu J (2012) Recent unrest of Changbaishan volcano, northeast China: a precursor of a future eruption? Geophys Res Lett 39(L16305):1–7. doi:10.1029/2012GL052600

    Google Scholar 

  • Xu J, Pan B, Liu T, Hajdas I, Zhao B, Yu H, Liu R, Zhao P (2013) Climatic impact of the millennium eruption of Changbaishan volcano in China: new insights from high-precision radiocarbon wiggle-match dating. Geophys Res Lett 40:54–59. doi:10.1029/2012GL054246

    Article  Google Scholar 

  • Yang Q, Sun G, Li J, Wei H, Liu R (1998) Airfall deposit and eruptive dynamics parameters of explosion of Tianchi volcano, Changbaishan, in 1215AD. Seismol Res Northeast China 14(2):53–58 (in Chinese with English abstract)

    Google Scholar 

  • Yang Q, Shi L, Chen X, Chen B, Zhang Y (2006) Characteristic of recent ejecta of the Changbaishan Tianchi volcano China. Seismol Geol 28:71–83 (in Chinese with English abstract)

    Google Scholar 

  • Yu H, Xu J, Lin C (2011) Morphological characterization and terminal velocity of pumice particles eruption during the millennium eruption of Changbaishan Tianchi volcano China. Seismol Geol 33(2):440–451 (in Chinese with English abstract)

    Google Scholar 

  • Zhao B, Xu J, Yu H (2010) Grain-size characteristics of pyroclasts in Changbaishan Mountain area. Seismol Geol 32(2):1–11 (in Chinese with English abstract)

    Google Scholar 

  • Zou H, Fan Q, Zhang H (2010) Rapid development of the great Millennium eruption of Changbaishan (Tianchi) Volcano, China/North Korea: evidence from U-Th zircon dating. Lithosphere 119(3–4):289–296

    Google Scholar 

Download references

Acknowledgments

We thank Hao yongwei, Liao Kaining and Li Xiaoli of Institute of Geology, China Earthquake Administration for their support and help in using parallel computing facility. This work was supported by the Special projects for China earthquake research (Grant no. 201208005 and 200708-27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Xu, J., Luan, P. et al. Probabilistic assessment of tephra fallout hazard at Changbaishan volcano, Northeast China. Nat Hazards 69, 1369–1388 (2013). https://doi.org/10.1007/s11069-013-0683-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-013-0683-1

Keywords

Navigation