Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management

Abstract

Starting with an overview on losses due to mountain hazards in the Russian Federation and the European Alps, the question is raised why a substantial number of events still are recorded—despite considerable efforts in hazard mitigation and risk reduction. The main reason for this paradox lies in a missing dynamic risk-based approach, and it is shown that these dynamics have different roots: firstly, neglecting climate change and systems dynamics, the development of hazard scenarios is based on the static approach of design events. Secondly, due to economic development and population dynamics, the elements at risk exposed are subject to spatial and temporal changes. These issues are discussed with respect to temporal and spatial demands. As a result, it is shown how risk is dynamic on a long-term and short-term scale, which has to be acknowledged in the risk concept if this concept is targeted at a sustainable development of mountain regions. A conceptual model is presented that can be used for dynamical risk assessment, and it is shown by different management strategies how this model may be converted into practice. Furthermore, the interconnectedness and interaction between hazard and risk are addressed in order to enhance prevention, the level of protection and the degree of preparedness.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alger C, Brabb E (2001) The development and application of a historical bibliography to assess landslide hazard in the United States. In: Glade T, Albini P, Francés F (eds) The use of historical data in natural hazard assessments. Kluwer, Dordrecht, pp 185–199

    Google Scholar 

  2. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP—Historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27(1):17–46

    Google Scholar 

  3. Alshanskii YY, Bedritskii AI, Vimberg GP, Korshunov AA, Shaimardanov MZ (1999) Impact of weather and climate on economic safety of Russia. Russ Meteorol Hydrol 6:1–4

    Google Scholar 

  4. Bätzing W (2002) Die aktuellen Veränderungen von Umwelt, Wirtschaft, Gesellschaft und Bevölkerung in den Alpen. Umweltbundesamt, Berlin

  5. Bell R, Glade T (2004) Quantitative risk analysis for landslides—examples from Bíldudalur, NW Iceland. Nat Hazards Earth Syst Sci 4(1):117–131

    Article  Google Scholar 

  6. Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Change 59(1–2):5–31

    Article  Google Scholar 

  7. Beniston M (2006) August 2005 intense rainfall event in Switzerland: not necessarily an analog for strong convective events in a greenhouse climate. Geophys Res Lett 33:L05701

    Article  Google Scholar 

  8. Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81(Supplement 1):71–95

    Article  Google Scholar 

  9. Bouwer LM, Bubeck P, Aerts JCJH (2010) Changes in future flood risk due to climate and development in a Dutch polder area. Global Environ Change 20(3):463–471

    Article  Google Scholar 

  10. Bründl M, Bartelt P, Schweizer J, Keiler M, Glade T (2010) Review and future challenges in snow avalanche risk analysis. In: Alcántara-Ayala I, Goudie A (eds) Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, pp 49–61

    Google Scholar 

  11. Brunetti M, Lentini G, Maugeri M, Nanni T, Auer I, Böhm R, Schöner W (2009) Climate variability and change in the Greater Alpine Region over the last two centuries based on multivariable analysis. Int J Climatol 29(15):2197–2225

    Article  Google Scholar 

  12. Brunsden D (2002) Geomorphological roulette for engineers and planners: some insights into an old game. Q J Eng Geol Hydrogeol 35(2):101–142

    Article  Google Scholar 

  13. Calanca P, Roesch A, Jasper K, Wild M (2006) Global warming and the summertime evapotranspiration regime of the Alpine region. Clim Change 79(1–2):65–78

    Article  Google Scholar 

  14. Calcaterra D, Parise M (2001) The contribution of historical information in the assessment of landslide hazard. In: Glade T, Albini P, Francés F (eds) The use of historical data in natural hazard assessments. Kluwer, Dordrecht, pp 201–216

    Google Scholar 

  15. Cappabianca F, Barbolini M, Natale L (2008) Snow avalanche risk assessment and mapping: a new method based on a combination of statistical analysis, avalanche dynamics simulation and empirically-based vulnerability relations integrated in a GIS platform. Cold Reg Sci Technol 54:193–205

    Article  Google Scholar 

  16. Cardona O (2004) The need for rethinking the concepts of vulnerability and risk from a holistic perspective: A necessary review and criticism for effective risk management. In: Bankoff G, Frerks G, Hilhorst D (eds) Mapping vulnerability. Disasters, development and people. Earthscan, London, pp 37–51

    Google Scholar 

  17. Catenacci V (1992) Il dissesto geologico e geoambientale in Italia dal dopoguerra al 1990. Memorie descrittive della Carta Geologica d’Italia 47. Servizio Geologico Nazionale, Rome

    Google Scholar 

  18. Commission of the European Communities (2007) Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:288:0027:0034:en:pdf. Accessed 12 Nov 2012

  19. CRED [Centre for Research on the Epidemiology of Disasters] (2012) The OFDA/CRED international disaster database EM-DAT, Université Catholique de Louvain, Brussels, www.emdat.net. Accessed 01 Aug 2012

  20. Crozier M, Glade T (1999) Frequency and magnitude of landsliding: Fundamental research issues. Zeitschrift für Geomorphologie NF Suppl.-Bd. 115:141–155

    Google Scholar 

  21. Crozier M, Glade T (2005) Landslide hazard and risk: issues, concepts and approach. In: Glade T, Anderson M, Crozier M (eds) Landslide hazard and risk. Wiley, Chichester, pp 2–40

    Google Scholar 

  22. Eckert N, Keylock CJ, Bertrand D, Parent E, Faug T, Favier P, Naaim M (2012) Quantitative risk and optimal design approaches in the snow avalanche field: review and extensions. Cold Reg Sci Technol 79–80:1–19

    Article  Google Scholar 

  23. Eisbacher G, Clague J (1984) Destructive mass movements in high mountains: hazard and management. Geological Survey of Canada, Ottawa

    Google Scholar 

  24. Elmer F, Hoymann J, Düthmann D, Vorogushyn S, Kreibich H (2012) Drivers of flood risk change. Nat Hazards Earth Syst Sci 12(5):1641–1657

    Article  Google Scholar 

  25. European Environment Agency (2010) Mapping the impacts of natural hazards and technological accidents in Europe—an overview of the last decade. EEA Technical Report Publications Office of the European Union, Luxembourg

    Google Scholar 

  26. Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage W (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102(3–4):85–98

    Article  Google Scholar 

  27. Field CB, Barros V, Stocker TF, Dahe Q, Dokken DJ, Plattner G-K, Ebi KL, Allen SK, Mastrandrea MD, Tignor M, Mach KJ, Midgley PM (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. Special report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  28. Föhn P, Meister R (1981) Determination of avalanche magnitude and frequency by direct observations and/or with aid of snowcover data. In: Proceedings IUFRO/FAO collegium on research in small torrential watersheds (incl. Avalanches). Grenoble, IUFRO (unpublished)

  29. Fraefel M, Schmid F, Frick E, Hegg C (2004) 31 Jahre Unwettererfassung in der Schweiz. In: Mikoš M, Gutknecht D (eds). Internationales symposion interpraevent, Riva del Garda, May 24–27, 2004. pp I/45–56

  30. Fuchs S (2008) Vulnerability to torrent processes. In: Brebbia C, Beriatos E (ed) Risk Analysis VI. WIT-Press, Southampton. WIT Trans Inform Commun Technol 39:289–298

  31. Fuchs S (2009) Susceptibility versus resilience to mountain hazards in Austria—Paradigms of vulnerability revisited. Nat Hazards Earth Syst Sci 9(2):337–352

    Article  Google Scholar 

  32. Fuchs S (2010) A coupled vulnerability approach for European mountain regions. In: Brebbia C (ed) Risk Analysis VII and Brownfields V. WIT-Press, Southampton. WIT Trans Inform Commun Technol 43:527–541

  33. Fuchs S, Bründl M (2005) Damage potential and losses resulting from snow avalanches in settlements of the canton of Grisons, Switzerland. Nat Hazards 34(1):53–69

    Article  Google Scholar 

  34. Fuchs S, Keiler M (2008) Variability of natural hazard risk in the European Alps: evidence from damage potential exposed to snow avalanche. In: Pinkowski J (ed) Disaster management handbook. Taylor & Francis, London, pp 267–279

    Google Scholar 

  35. Fuchs S, Keiler M (in press) Space and time: coupling dimensions in natural hazard risk management? In: Müller-Mahn D (ed) The spatial dimension of risk—how geography shapes the emergence of riskscapes. Earthscan, London

  36. Fuchs S, McAlpin MC (2005) The net benefit of public expenditures on avalanche defence structures in the municipality of Davos, Switzerland. Nat Hazards Earth Syst Sci 5(3):319–330

    Article  Google Scholar 

  37. Fuchs S, Bründl M, Stötter J (2004) Development of avalanche risk between 1950 and 2000 in the municipality of Davos, Switzerland. Nat Hazards Earth Syst Sci 4(2):263–275

    Article  Google Scholar 

  38. Fuchs S, Keiler M, Zischg A, Bründl M (2005) The long-term development of avalanche risk in settlements considering the temporal variability of damage potential. Nat Hazards Earth Syst Sci 5(6):893–901

    Article  Google Scholar 

  39. Fuchs S, Keiler M, Zischg A, Bründl M (2006) Temporal variability of damage potential in settlements—a contribution towards the long-term development of avalanche risk. In: Ammann W, Dannenmann S, Vulliet L (eds) Risk21—coping with risks due to natural hazards in the 21st century. Taylor & Francis, London, pp 237–247

    Google Scholar 

  40. Fuchs S, Thöni M, McAlpin MC, Gruber U, Bründl M (2007a) Avalanche hazard mitigation strategies assessed by cost effectiveness analyses and cost benefit analyses—evidence from Davos, Switzerland. Nat Hazards 41(1):113–129

    Article  Google Scholar 

  41. Fuchs S, Heiss K, Hübl J (2007b) Towards an empirical vulnerability function for use in debris flow risk assessment. Nat Hazards Earth Syst Sci 7(5):495–506

    Article  Google Scholar 

  42. Fuchs S, Kaitna R, Scheidl C, Hübl J (2008) The application of the risk concept to debris flow hazards. Geomechan Tunn 1(2):120–129

    Article  Google Scholar 

  43. Fuchs S, Spachinger K, Dorner W, Rochman J, Serrhini K (2009) Evaluating cartographic design in flood risk mapping. Environ Hazards 8(1):52–70

    Article  Google Scholar 

  44. Fuchs S, Kuhlicke C, Meyer V (2011) Editorial for the special issue: vulnerability to natural hazards—the challenge of integration. Nat Hazards 58(2):609–619

    Article  Google Scholar 

  45. Fuchs S, Ornetsmüller C, Totschnig R (2012) Spatial scan statistics in vulnerability assessment—an application to mountain hazards. Nat Hazards 64(3):2129–2151

    Google Scholar 

  46. Gavrilov SV (2006) Kamchatskoe nasledie [Heritage of Kamchatka]. Kamchatskii pechatnyi dvor, Petropavlovsk-Kamchatskii

    Google Scholar 

  47. Glade T, Anderson M, Crozier M (eds) (2005) Landslide hazard and risk. Wiley, Chichester

    Google Scholar 

  48. Golledge R (2002) The nature of geographic knowledge. Ann As Am Geogr 92(1):1–14

    Article  Google Scholar 

  49. Government of Russian Federation (2007) Postanovlenie “O klassifikatsii chrezvychainykh situatsii prirodnogo i tekhnogennogo kharakhtera” [Enactment “On the classification of the natural and technogenic emergency situation”]. Vol. 302, May 21, 2007

  50. Gregory K (2006) The human role in changing river channels. Geomorphology 79(3–4):172–191

    Article  Google Scholar 

  51. Guzzetti F (2000) Landslide fatalities and the evaluation of landslide risk in Italy. Eng Geol 58(2):89–107

    Article  Google Scholar 

  52. Guzzetti F, Tonelli G (2004) Information system on hydrological and geomorphological catastrophes in Italy (SICI): a tool for managing landslide and flood hazards. Nat Hazards Earth Syst Sci 4(2):213–232

    Article  Google Scholar 

  53. Guzzetti F, Salvati P, Stark C (2005) Historical evaluation of flood and landslide risk to the population of Italy. Environ Manag 36(1):15–36

    Article  Google Scholar 

  54. Haeberli W, Hölzle M, Paul F, Zemp M (2007) Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps. Ann Glaciol 46:150–160

    Article  Google Scholar 

  55. Harris C, Vonder Mühll D, Isaksen K, Haeberli W, Sollid JL, King L, Holmlund P, Dramis F, Guglielmin M, Palacios D (2003) Warming permafrost in European mountains. Global Planet Change 39(3–4):215–225

    Article  Google Scholar 

  56. Helsen M, Koop P, Van Steijn H (2002) Magnitude-frequency relationship for debris flows on the fan of the Chalance torrent, Valgaudemar (French Alps). Earth Surf Proc Land 27(12):1299–1307

    Article  Google Scholar 

  57. Hendrikx J, Owens I (2008) Modified avalanche risk equations to account for waiting traffic on avalanche prone roads. Cold Reg Sci Technol 51(2–3):214–218

    Article  Google Scholar 

  58. Hilker N, Badoux A, Hegg C (2009) The Swiss flood and landslide damage database 1972–2007. Nat Hazards Earth Syst Sci 9(3):913–925

    Article  Google Scholar 

  59. Holub M, Fuchs S (2008) Benefits of local structural protection to mitigate torrent-related hazards. In: Brebbia C, Beriatos E (eds) Risk Analysis VI. WIT-Press, Southampton. WIT Trans Inform Commun Technol 39:401–411

  60. Holub M, Fuchs S (2009) Mitigating mountain hazards in Austria—Legislation, risk transfer, and awareness building. Nat Hazards Earth Syst Sci 9(2):523–537

    Article  Google Scholar 

  61. Holub M, Suda J, Fuchs S (2012) Mountain hazards: reducing vulnerability by adapted building design. Environm Earth Sci 66(7):1853–1870

    Article  Google Scholar 

  62. Hotz M-C, Weibel F (2005) Arealstatistik Schweiz. Bundesamt für Statistik, Neuchâtel

    Google Scholar 

  63. Hufschmidt G, Crozier M, Glade T (2005) Evolution of natural risk: research framework and perspectives. Nat Hazards Earth Syst Sci 5(3):375–387

    Article  Google Scholar 

  64. Huggel C, Clague J, Korup O (2012) Is climate change responsible for changing landslide activity in high mountains? Earth Surf Proc Land 37(1):77–91

    Article  Google Scholar 

  65. IFRCRCS [International Federation of Red Cross and Red Crescent Societies] (2005) World disasters report 2005. International Federation of Red Cross and Red Crescent Societies, Geneva

  66. Innes J (1985) Magnitude-frequency relations of debris flows in northwest Europe. Geografiska Annaler A 67(1–2):23–32

    Article  Google Scholar 

  67. Ives J, Messerli B, Spiess E (1997) Mountains of the world—a global priority. In: Messerli B, Ives J (eds) Mountains of the world. Parthenon, Carnforth, pp 1–15

    Google Scholar 

  68. Jónasson K, Sigurðsson S, Arnalds Þ (1999) Estimation of avalanche risk, VÍ-R99001-ÚR01. Rit Veðurstofu Íslands, Reykjavík

  69. Kappes M, Papathoma-Köhle M, Keiler M (2012) Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl Geogr 32(2):577–590

    Article  Google Scholar 

  70. Kates R (1971) Natural hazard in human ecological perspective: hypotheses and models. Econ Geogr 47:438–451

    Article  Google Scholar 

  71. Kates R, Kasperson J (1983) Comparative risk analysis of technological hazards (a review). Proc Natl Acad Sci USA 80:7027–7038

    Article  Google Scholar 

  72. Keiler M (2004) Development of the damage potential resulting from avalanche risk in the period 1950–2000, case study Galtür. Nat Hazards Earth Syst Sci 4(2):249–256

    Article  Google Scholar 

  73. Keiler M (2011) Geomorphology and complexity—inseparable connected? Zeitschrift für Geomorphologie 55(Suppl. 3):233–257

    Google Scholar 

  74. Keiler M, Fuchs S (2010) Berechnetes Risiko—Mit Sicherheit am Rande der Gefahrenzone. In: Egner H, Pott A (eds) Geographische Risikoforschung. Zur Konstruktion verräumlichter Risiken und Sicherheiten. Erdkundliches Wissen 147. Franz Steiner, Stuttgart, pp 51–68

  75. Keiler M, Meißl G, Stötter J (2004) Determination of the damage potential: a contribution to the analysis of avalanche risk. In: Brebbia C (ed) Risk Analysis IV. WIT-Press Southampton. WIT Trans Ecol Environ 77:187–196

  76. Keiler M, Zischg A, Fuchs S, Hama M, Stötter J (2005) Avalanche related damage potential—changes of persons and mobile values since the mid-twentieth century, case study Galtür. Nat Hazards Earth Syst Sci 5(1):49–58

    Article  Google Scholar 

  77. Keiler M, Sailer R, Jörg P, Weber C, Fuchs S, Zischg A, Sauermoser S (2006) Avalanche risk assessment—a multi-temporal approach, results from Galtür, Austria. Nat Hazards Earth Syst Sci 6(4):637–651

    Article  Google Scholar 

  78. Keiler M, Knight J, Harrison S (2010) Climate change and geomorphological hazards in the eastern European Alps. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 368:2461–2479

    Article  Google Scholar 

  79. Keiler M, Kellerer-Pirklbauer A, Otto J-C (2012) Concepts and implications of environmental change and human impact: studies from Austrian geomorphological research. Geografiska Annaler A 94(1):1–5

    Article  Google Scholar 

  80. Keylock C, McClung D, Magnússon M (1999) Avalanche risk mapping by simulation. J Glaciol 45(150):303–314

    Article  Google Scholar 

  81. Kienholz H, Krummenacher B, Kipfer A, Perret S (2004) Aspects of integral risk management in practice—considerations with respect to mountain hazards in Switzerland. Oesterr Wasser Abfallwirtsch 56(3–4):43–50

    Google Scholar 

  82. Kristensen K, Habritz C, Harbitz A (2003) Road traffic and avalanches—methods for risk evaluation and risk management. Surv Geophys 24(5–6):603–616

    Article  Google Scholar 

  83. Kron W (2003) Flood risk = hazard × exposure × vulnerabiliy. In: Wu B, Wang Z-Y, Wang G, Huang G, Fang H, Huang J (eds) Flood defence 2002, vol 1. Science Press, New York, pp 82–97

    Google Scholar 

  84. Lambrecht A, Kuhn M (2007) Glacier changes in the Austrian Alps during the last three decades, derived from the new Austrian glacier inventory. Ann Glaciol 46(1):177–184

    Article  Google Scholar 

  85. Laternser M, Pfister C (1997) Avalanches in Switzerland 1500–1990. Palaeoclimate Res 19:241–266

    Google Scholar 

  86. Laternser M, Schneebeli M (2002) Temporal trend and spatial distribution of avalanche activity during the last 50 years in Switzerland. Nat Hazards 27(3):201–230

    Article  Google Scholar 

  87. Luetschg M, Lehning M, Haeberli W (2008) A sensitivity study of factors influencing warm/thin permafrost in the Swiss Alps. J Glaciol 54(187):696–704

    Article  Google Scholar 

  88. Luzian R (2002) Die österreichische Schadenslawinen-Datenbank. Forschungsanliegen, Aufbau, erste Ergebnisse, Mitteilungen der forstlichen Bundesversuchsanstalt 175. Forstliche Bundesversuchsanstalt, Vienna

  89. Luzian R, Eller M (2007) Dokumentation von Lawinenschadereignissen. Lawinenberichte der Winter von 1998/1999 bis 2003/2004. BfW Berichte 140. Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft, Vienna

  90. Mazzorana B, Fuchs S (2010) Fuzzy Formative Scenario Analysis for woody material transport related risks in mountain torrents. Environ Model Softw 25(10):1208–1224

    Article  Google Scholar 

  91. Mazzorana B, Hübl J, Fuchs S (2009) Improving risk assessment by defining consistent and reliable system scenarios. Nat Hazards Earth Syst Sci 9(1):145–159

    Article  Google Scholar 

  92. Mazzorana B, Comiti F, Scherer C, Fuchs S (2012) Developing consistent scenarios to assess flood hazards in mountain streams. J Environ Manag 94(1):112–124

    Article  Google Scholar 

  93. Meyer V, Kuhlicke C, Luther J, Fuchs S, Priest S, Dorner W, Serrhini K, Pardoe J, McCarthy S, Seidel J, Scheuer S, Palka G, Unnerstall H, Viavatenne C (2012) Recommendations for the user-specific enhancement of flood maps. Nat Hazards Earth Syst Sci 12(5):1701–1716

    Article  Google Scholar 

  94. Munich Re (ed) (2011) Topics geo. Natural catastrophes 2010. Munich Reinsurance Company, Munich

  95. Myagkov SM, Porfiriev B, Lesnykh VV, Shnyparkov AL (2003) Vospriyatie prirodnykh riskov i kommunikatsionnye otnosheniya [Perception of natural risks and front-end relationships]. In: Anonymous (ed) Prirodnye opasnosti Rossii. Otsenka i upravlenie prirodnymi riskami [Natural disasters in Russia. Estimation and management of natural risks]. Kruk, Moscow, pp 258–263

  96. Nordregio (2004) Mountain areas in Europe: analysis of mountain areas in EU member states, acceding and other European countries. Final report. Stockholm

  97. Oberndorfer S, Fuchs S, Rickenmann D, Andrecs P (2007) Vulnerabilitätsanalyse und monetäre Schadensbewertung von Wildbachereignissen in Österreich. BfW Berichte 139. Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft, Vienna

  98. Österreichisch-Ungarische Monarchie (1884) Gesetz vom 30. Juni 1884, betreffend Vorkehrungen zur unschädlichen Ableitung von Gebirgswässern. Reichsgesetzblatt für die im Reichsrath vertretenen Königreiche und Länder, Jg. 1870–1918. Kaiserlich-königliche Hof- und Staatsdruckerei, Vienna, pp 374–380

  99. Papathoma-Köhle M, Kappes M, Keiler M, Glade T (2011) Physical vulnerability assessment for alpine hazards: state of the art and future needs. Nat Hazards 58(2):645–680

    Article  Google Scholar 

  100. Parry M, Canziani O, Palutikof J (eds) (2007) Climate change 2007. Impacts, adaptation and vulnerability: working group II contribution to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  101. Penning-Rowsell E, Floyd P, Ramsbottom D, Surendran S (2005) Estimating injury and loss of life in floods: a deterministic framework. Nat Hazards 36(1–2):43–64

    Article  Google Scholar 

  102. Porfiriev B (1999) Development policy: a driving force of environmental hazard in Russia. Environ Hazards 1(1):45–50

    Article  Google Scholar 

  103. Price M (ed) (1999) Global change in the mountains. Parthenon, Carnforth

    Google Scholar 

  104. Priest S (2009) Building models to estimate loss of life for flood events. Foodsite Report T10-08-10, www.floodsite.net/html/partner_area/project_docs/T10_08_10_Risk_to_Life_ExecSum_V1_3_P01.pdf. Accessed 19 Nov 2012

  105. Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Am Meteorol Soc 89:303–311

    Article  Google Scholar 

  106. Renn O (2008) Concepts of risk: an interdisciplinary review—part 1: disciplinary risk concepts. Gaia 17(1):50–66

    Google Scholar 

  107. Repubblica Italiana (1998) G.U. n. 134/1998: DD. LL. 11 giugno 1998, n. 180. Misure urgenti per la prevenzione del rischio idrogeologico ed a favore delle zone colpite da disastri franosi nella regione Campania. Gazzetta Ufficiale della Repubblica Italiana 134, Republicca Italiana, Rome

  108. Republik Österreich (1975) Forstgesetz 1975. BGBl 440/1975. Republik Österreich, Vienna

    Google Scholar 

  109. Republik Österreich (1976) Verordnung des Bundesministers für Land- und Forstwirtschaft vom 30. Juli 1976 über die Gefahrenzonenpläne. BGBl 436/1976. Republik Österreich, Vienna

  110. Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19(1):47–77

    Article  Google Scholar 

  111. Röthlisberger G (1991) Chronik der Unwetterschäden in der Schweiz. Berichte der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft 330. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, Birmensdorf

  112. Sattler K, Keiler M, Zischg A, Schrott L (2011) On the connection between debris flow activity and permafrost degradation: a case study from the Schnalstal, South Tyrolean Alps, Italy. Permafrost Periglac Process 22:254–265

    Google Scholar 

  113. Schneebeli M, Laternser M, Ammann W (1997) Destructive snow avalanches and climate change in the Swiss Alps. Eclogae Geol Helv 90(3):457–461

    Google Scholar 

  114. Schneebeli M, Laternser M, Föhn P, Ammann W (1998) Wechselwirkungen zwischen Klima, Lawinen und technischen Massnahmen. vdf Hochschulverlag an der ETH, Zürich

  115. Schuster R (1996) Socioeconomic significance of landslides. In: Turner R, Schuster R (eds) Landslides. Investigation and mitigation. National Academy Press, Washington, pp 12–35

    Google Scholar 

  116. Schweizerische Eidgenossenschaft (1991) Bundesgesetz über den Wald. Bundesversammlung der Schweizerischen Eidgenossenschaft, Bern

  117. Seliverstov Y, Glazovskaya T, Shnyparkov A, Vilchek Y, Sergeeva K, Martynov A (2008) Assessment and mapping of snow avalanche risk in Russia. Ann Glaciol 49:205–209

    Article  Google Scholar 

  118. Semenov VA (2011) Climate-related changes in hazardous and adverse hydrological events in the Russian rivers. Russ Meteorol Hydrol 36(2):124–129

    Article  Google Scholar 

  119. Shmigel’skii A (2008) Samaya strashnaya lavina [The most terrible avalanche]. http://aleksandrovsk-sakh.ru/node/2193. Accessed 10 June 2012

  120. Shnyparkov AL, Fuchs S, Sokratov SA, Seliverstov YG, Koltermann KP, Vikulina MA (2012) Theory and practice of individual snow avalanche risk assessment in the Russian arctic. Geogr Environ Sustain 5(3):64–81

    Google Scholar 

  121. Slaymaker O (2010) Mountain hazards. In: Alcántara-Ayala I, Goudie A (eds) Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, pp 33–47

    Google Scholar 

  122. Slaymaker O, Embleton-Hamann C (2009) Mountains. In: Slaymaker O, Spencer T, Embleton-Hamann C (eds) Geomorphology and global environmental change. Cambridge University Press, Cambridge, pp 37–70

    Google Scholar 

  123. Slaymaker O, Spencer T, Embleton-Hamann C (eds) (2009) Geomorphology and global environmental change. Cambridge University Press, Cambridge

    Google Scholar 

  124. Slovic P (1987) Perception of risk. Science 236:280–285

    Article  Google Scholar 

  125. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) (2007) Climate change 2007. The scientific basis: contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  126. Statistik Austria (2008) Dauersiedlungsraum, Gebietsstand 2008 http://www.statistik.at/dynamic/wcmsprod/idcplg?IdcService=insert_index&websitesec=1545&rurl=/web_de/statistiken/regionales/regionale_gliederungen/dauersiedlungsraum/index.html&Language=de. Accessed 01 July 2012

  127. Steiner D, Pauling A, Nussbaumer SU, Nesje A, Luterbacher J, Wanner H, Zumbühl HJ (2008) Sensitivity of European glaciers to precipitation and temperature—two case studies. Clim Change 90(4):413–441

    Article  Google Scholar 

  128. Stoffel M, Beniston M (2006) On the incidence of debris flows from the early Little Ice Age to a future greenhouse climate: a case study from the Swiss Alps. Geophys Res Lett 33:L16404

    Article  Google Scholar 

  129. Swiss Re (2011) Natural catastrophes and man-made disasters in 2010. Swiss Reinsurance Company, Zurich

  130. The Ministry of Emergency Situations (2004) National report of the Russian Federation at the World Conference on Disaster Reduction. EMERCOM, Moscow

  131. Tiefbauamt Graubünden (2011) Permanente Strassenverkehrszählung 2010. TBA GR, Chur

  132. Totschnig R, Sedlacek W, Fuchs S (2011) A quantitative vulnerability function for fluvial sediment transport. Nat Hazards 58(2):681–703

    Article  Google Scholar 

  133. Turner B II (2002) Contested identities: human-environment geography and disciplinary implications in a restructuring academy. Proc Natl Acad Sci USA 92(1):52–74

    Google Scholar 

  134. United Nations General Assembly (1989) International decade for natural disaster reduction. United Nations General Assembly Resolution 236 session 44 of 22 December 1989, A-RES-44-236. United Nations, Geneva

  135. United Nations General Assembly (2000) International decade for natural disaster reduction: successor arrangements. United Nations General Assembly Resolution 219 session 54 of 03 February 2000. A-RES-54-219. United Nations, Geneva

  136. van Steijn H (1996) Debris-flow magnitude-frequency relationships for mountainous regions of Central and Northwest Europe. Geomorphology 15(3–4):259–273

    Article  Google Scholar 

  137. Vasil’ev AA, Glushkova NI, Lapcheva VF (1994) The frequency of convective atmospheric phenomena causing natural disasters. Russ Meteorol Hydrol 2:10–13

    Google Scholar 

  138. Vikulina MA, Shnyparkov AL (2006) K voprosu o terminologii i pokazatelyakh lavinnoi deyatel’nosti [To the question on terminology and characteristics of the avalanche actions]. III Mezhdunarodnaya konferentsiya “Laviny i smezhnye voprosy”, Kirovsk, 4-8 sentyabrya 2006 [III International conference “Avalanches and related subjects”, Kirovsk, September 4-8 2006. Proceedings]. Apatit-media, Kirovsk, pp 122–128

  139. Wanner H, Grosjean M, Röthlisberger R, Xoplaki E (2006) Climate variability, predictability and climate risks. Springer, Dordrecht

    Google Scholar 

  140. White G, Kates R, Burton I (2001) Knowing better and losing even more: the use of knowledge in hazards management. Environ Hazards 3(3–4):81–92

    Article  Google Scholar 

  141. Wilhelm C (1997) Wirtschaftlichkeit im Lawinenschutz. Mitteilungen des Eidgenössischen Instituts für Schnee- und Lawinenforschung 54. Eidgenössisches Institut für Schnee- und Lawinenforschung, Davos

  142. Wolman M, Miller J (1960) Magnitude and frequency of forces in geomorphic processes. J Geol 68:54–74

    Article  Google Scholar 

  143. Zemp M, Haeberli W, Hoelzle M, Paul F (2006) Alpine glaciers to disappear within decades? Geophys Res Lett 33:L13504

    Article  Google Scholar 

  144. Zimmermann M, Mani P, Romang H (1997) Magnitude-frequency aspects of alpine debris flows. Eclogae Geol Helv 90:415–420

    Google Scholar 

  145. Zischg A, Fuchs S, Stötter J (2004) Uncertainties and fuzziness in analysing risk related to natural hazards—a case study in the Ortles Alps, South Tyrol, Italy. In: Brebbia C (ed) Risk Analysis IV. WIT-Press, Southampton. WIT Trans Ecol Environ 77:523–532

  146. Zischg A, Fuchs S, Keiler M, Meißl G (2005a) Modelling the system behaviour of wet snow avalanches using an expert system approach for risk management on high alpine traffic roads. Nat Hazards Earth Syst Sci 5(6):821–832

    Article  Google Scholar 

  147. Zischg A, Fuchs S, Keiler M, Stötter J (2005b) Temporal variability of damage potential on roads as a conceptual contribution towards a short-term avalanche risk simulation. Nat Hazards Earth Syst Sci 5(2):235–242

    Article  Google Scholar 

  148. Zischg A, Macconi P, Pollinger R, Sperling M, Mazzorana B, Marangoni N, Berger E, Staffler H (2007) Historische Überschwemmungs- und Murgangereignisse in Südtirol. Der Schlern 3(2007):4–16

    Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement no. 262693, as well as from the Austrian Science Fund (FWF) under grant agreement no. L535-N10 and from the reinsurer Munich Re. Furthermore, the authors kindly acknowledge the support received from the Faculty of Geography, Lomonosov Moscow State University, Russian Federation, and the insightful comments of Thomas Thaler and another anonymous referee on an earlier version of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sven Fuchs.

Appendix

Appendix

In the Republic of Austria, the legal prescriptions for delimiting hazard zones are regulated by a national act (Republik Österreich 1975) and an associated decree (Republik Österreich 1976). The implementation of these regulations is assigned to the Federal Ministry of Agriculture, Forestry, Environment and Water Management (BMLFUW) and administrated by the governmental departments of the Austrian Service for Torrent and Avalanche Control (WLV) and by the Federal Water Engineering Administration.

In § 8b of the Forest Act of 1975, the delimitation of hazard zones in catchment areas prone to natural hazards such as torrential floods or avalanches is prescribed. In § 11, the compilation of hazard maps and the involvement of communes and population are regularised. The contents and designs of these maps are specified by the decree associated to the Forest Act (Republik Österreich 1976). According to § 5 (2) of this Decree on Hazard Zoning, all available data and information on natural hazards as well as interactions between individual hazard processes have to be considered during the compilation of hazard maps. Furthermore, interferences with the human environment, such as infrastructure facilities and settlements, have to be taken into account.

Hazard maps are typically based on the area of an individual community and should be compiled in a reproducible manner to allow for validation during the approval process by the Federal Ministry of Agriculture, Forestry, Environment and Water Management.

Hazard maps are based on a design event with a return period of 1 in 150 years, and an event occurring more frequently with a return period of approximately 1 in 10 years (Republik Österreich 1976). In § 6 of the Decree on Hazard Zoning, the criteria for delimitation of hazard zones are prescribed. According to these prescriptions, red hazard zones indicate those areas where the permanent utilisation for settlement and traffic purposes is not possible or only possible with extraordinary efforts for mitigation measures, whereas detailed economical figures of such efforts are not given. Yellow hazard zones indicate those areas where a permanent utilisation for settlement and traffic purposes is impaired by hazard processes. Furthermore, specific other areas have to be displayed in the hazard maps: (1) Blue colours mark areas to be provided for future mitigation measures, (2) brown colours indicate areas affected by land slides and rock fall and (3) purple colours indicate areas that can be used as protection due to their natural properties, such as protection forests or natural retention basins.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fuchs, S., Keiler, M., Sokratov, S. et al. Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management. Nat Hazards 68, 1217–1241 (2013). https://doi.org/10.1007/s11069-012-0508-7

Download citation

Keywords

  • Mountain hazards
  • Risk assessment
  • Space
  • Time
  • Risk management