Skip to main content

Advertisement

Log in

Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Fire in forested areas can be regarded as an environmental disaster which is triggered by either natural forces or anthropogenic activities. Fires are one of the major hazards in forested and grassland areas in the north of Iran. Control of fire is difficult, but it is feasible to map fire risk by geospatial technologies and thereby minimize the frequency of fire occurrences and damages caused by fire. The fire risk models provide a suitable concept to understand characterization of fire risk. Some models are map based, and they combine effectively different forest fire–causing variables with remote sensing data in a GIS environment for identifying and mapping forest fire risk. In this study, Structural Fire Index, Fire Risk Index, and a new index called Hybrid Fire Index were used to delineate fire risk in northeastern Iran that is subjected to frequent forest fire. Vegetation moisture, slope, aspect, elevation, distance from roads, and vicinity to settlements were used as the factors influencing accidental fire starts. These indices were set up by assigning subjective weight values to the classes of the layers based on their sensitivity ratio to fire. Hot spots data derived from MODIS satellite sensor were used to validate the indices. Assessment of the indices with receiver operating characteristic (ROC) curves shows that 76.7 % accuracy of the HFI outperformed the other two indices. According to the Hybrid Fire Index, 57.5 % of the study area is located under high-risk zone, 33 % in medium-risk zone, and the remaining 9.5 % area is located in low-risk zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Albini FA (1976) Estimating wildfire behavior and effects. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT

    Google Scholar 

  • Alencar AAC, Solórzano LA, Nepstad DC (2004) Modeling forest understory fires in an Eastern Amazonian landscape. Ecol Appl 14(sp4):139–149. doi:10.1890/01-6029

    Google Scholar 

  • Alexandrian D, Esnault F (1998) Public policies affecting forest fires in the Mediterranean Basin. FAO Forestry Rome

  • Allard G (2001) The fire situation in Islamic Republic of Iran. In: FRA global forest fire assessment 1990–2000. FAO, Rome

  • Alonso-Betanzos A, Fontenla-Romero O, Guijarro-Berdiñas B, Hernández-Pereira E, Canda J, Jimenez E, Legido J, L, Muñiz S, Paz-Andrade C, Paz-Andrade MI (2002) A neural network approach for forestal fire risk estimation. In: van Harmelen F (ed) The 15th European conference on artificial intelligence, ECAI’2002, Lyon, France. IOS Press, pp 643–647

  • Anderson HE (1982) Aids to determining fuel models for estimating fire behavior. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT

    Google Scholar 

  • Ardakani AS, Zoej MJV, Mohammadzadeh A, Mansourian A (2011) Spatial and temporal analysis of fires detected by MODIS data in Northern Iran from 2001 to 2008. IEEE J Sel Top Appl Earth Obs Remote Sens 4(1):216–225

    Article  Google Scholar 

  • ASTER GDEM Validation Team (NASA.USGS.LPDAA.EROS) (2009) ASTER global DEM validation. Summary Report. ASTER GDEM Validation Team: METI, ERSDAC NASA, LPDAAC, USGS, and EROS

  • Avila-Flores D, Pompa-Garcia M, Antonio-Nemiga X, Rodriguez-Trejo D, Vargas-Perez E, Santillan-Perez J (2010) Driving factors for forest fire occurrence in Durango State of Mexico: a geospatial perspective. Chin Geograph Sci 20(6):491–497. doi:10.1007/s11769-010-0437-x

    Article  Google Scholar 

  • Beguería S (2006) Validation and evaluation of predictive models in hazard assessment and risk management. Nat Hazards 37(3):315–329. doi:10.1007/s11069-005-5182-6

    Article  Google Scholar 

  • Bo-cai G (1996) NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58(3):257–266. doi:10.1016/s0034-4257(96)00067-3

    Article  Google Scholar 

  • Braun WJ, Jones BL, Lee JSW, Woolford DG, Wotton BM (2010) Forest fire risk assessment: an illustrative example from Ontario, Canada. J Prob Stat. doi:10.1155/2010/823018

  • Caetan M, Carrão H, Freire S (2002) Selection of the best method for fire risk map production PREMFIRE Prevention and mitigation of forest fires in Portugal. Instituto Geográfico Português (IGP), Portuguese Geographic Institute

  • Carrao H, Freire S, Caetano MR (2003) Fire risk mapping using satellite imagery and ancillary data: towards operationality. In: Manfred O, Guido DU, Leonidas T (eds) SPIE, pp 154–165

  • Castro R, Chuvieco E (1998) Modeling forest fire danger from geographic information systems. Geocarto Int 13(1):15–23. doi:10.1080/10106049809354624

    Article  Google Scholar 

  • Chen K, Blong R, Jacobson C (2003) Towards an integrated approach to natural hazards risk assessment using GIS: with reference to bushfires. Environ Manag 31(4):0546–0560. doi:10.1007/s00267-002-2747-y

    Article  Google Scholar 

  • Chéret V, Denux JP (2011) Analysis of MODIS NDVI time series to calculate indicators of Mediterranean forest fire susceptibility. GISci Remote Sens 48(2):171–194

    Article  Google Scholar 

  • Chuvieco E, Congalton RG (1988) Mapping and inventory of forest fires from digital processing of TM data. Geocarto Int 4:41–53

    Article  Google Scholar 

  • Chuvieco E, Congalton RG (1989) Application of remote sensing and geographic information system to forest fire hazard mapping. Remote Sens Environ 29:147–159

    Article  Google Scholar 

  • Chuvieco E, Aguado I, Yebra M, Nieto H, Salas J, Martín MP, Vilar L, Martínez J, Martín S, Ibarra P, de la Riva J, Baeza J, Rodríguez F, Molina JR, Herrera MA, Zamora R (2010) Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol Model 221(1):46–58. doi:10.1016/j.ecolmodel.2008.11.017

    Article  Google Scholar 

  • Csiszar IA, Morisette JT, Giglio L (2006) Validation of active fire detection from moderate-resolution satellite sensors: the MODIS example in northern Eurasia. IEEE Trans Geosci Remote Sens 44(7):1757–1764

    Article  Google Scholar 

  • Davies DK, Ilavajhala S, Min Minnie W, Justice CO (2009) Fire information for resource management system: archiving and distributing MODIS active fire data. IEEE Trans Geosci Remote Sens 47(1):72–79

    Article  Google Scholar 

  • DeBano LF, Neary DG, Ffolliott PF (1998) Fire’s effects on ecosystems. Wiley, New York

    Google Scholar 

  • Dlamini W (2011) Application of Bayesian networks for fire risk mapping using GIS and remote sensing data. GeoJournal 76(3):283–296. doi:10.1007/s10708-010-9362-x

    Article  Google Scholar 

  • Dong X, Li-min D, Guo-fan S, Lei T, Hui W (2005) Forest fire risk zone mapping from satellite images and GIS for Baihe Forestry Bureau, Jilin, China. J For Res 16(3):169–174. doi:10.1007/bf02856809

    Article  Google Scholar 

  • Erten E, Kurgun V, Musaoglu N (2004) Forest fire risk zone mapping from satellite imagery and GIS a case study. In: Geo-imagery bridging continents, Istanbul, Turkey, 2004. ISPRS

  • Fiorucci P, Gaetani F, Lanorte A, Lasaponara R (2007) Dynamic fire danger mapping from satellite imagery and meteorological forecast data. Earth Interact 11(7):1–17. doi:10.1175/ei199.1

    Article  Google Scholar 

  • Forests Range and Watershed Management Organization of Iran (FRWOI) (2005) Statistical report of forest. Tehran

  • Gallant JC, Read A (2009) Enhancing the SRTM data for Australia. In: Purves R, Gruber S, Straumann R, Hengl T (eds) Proceedings of geomorphometry, Zurich, Switzerland, 2009

  • Graña M, Duro RJ (2008) Computational intelligence for remote sensing. Springer, Berlin

  • Hardisky MA, Klemas V, Smart RM (1983) The influence of soil salinity, growth form, and leaf moisture on-the spectral radiance of ~Spartina alterniflora canopies. Photogramm Eng Remote Sensing 49(1):77–83

    Google Scholar 

  • Hardy CC (2005) Wildland fire hazard and risk: problems, definitions, and context. For Ecol Manag 211(1–2):73–82. doi:10.1016/j.foreco.2005.01.029

    Article  Google Scholar 

  • Hemmleb M, Weritz F, Schiemenz A, Grote A, Maierhofer C (2006) Multi-spectral data acquisition and processing techniques for damage detection on building surfaces. In: Maas H-G, Schneider D (eds) Image engineering and vision metrology, Dresden, Germany, 2006. ISPRS

  • Henrique NC, José Aldo AP, Rossi AS, Sávio GF, Luciano TO (2011) Fire risk map for the Serra de São Domingos Municipal park, Poços de caldas, MG. CERNE Enero Marzo 17(1):77–83

    Google Scholar 

  • Hernandez-Leal PA, Arbelo M, Gonzalez-Calvo A (2006) Fire risk assessment using satellite data. Adv Space Res 37(4):741–746. doi:10.1016/j.asr.2004.12.053

    Article  Google Scholar 

  • Hernandez-Leal PA, Gonzalez-Calvo A, Arbelo M, Barreto A, Alonso-Benito A (2008) Synergy of GIS and remote sensing data in forest fire danger modeling. IEEE J Sel Top Appl Earth Obs Remote Sens 1(4):240–247. doi:10.1109/jstars.2008.2009043

    Article  Google Scholar 

  • Huesca M, Litago J, Palacios-Orueta A, Montes F, Sebastián-López A, Escribano P (2009) Assessment of forest fire seasonality using MODIS fire potential: a time series approach. Agric For Meteorol 149(11):1946–1955. doi:10.1016/j.agrformet.2009.06.022

    Article  Google Scholar 

  • I. R. of Iran Meteorological Organization (IRIMO) (2005) Annual report of climatic statistics. http://www.irimo.ir/english/.2012

  • Iwan S, Mahmud AR, Mansor S, Shariff ARM, Nuruddin AA (2004) GIS-grid-based and multi-criteria analysis for identifying and mapping peat swamp forest fire hazard in Pahang, Malaysia. Disaster Prev Manag 13(5):379–386

    Article  Google Scholar 

  • Jain A, Ravan SA, Singh RK, Das KK (1996) Forest fire risk modelling using remote sensing and GIS. Curr Sci 70(10):928–933

    Google Scholar 

  • Jaiswal RK, Mukherjee S, Raju KD, Saxena R (2002) Forest fire risk zone mapping from satellite imagery and GIS. Int J Appl Earth Obs Geoinf 4(1):1–10. doi:10.1016/s0303-2434(02)00006-5

    Article  Google Scholar 

  • Jaiswal RK, Krishnamurthy J, Mukherjee S (2005) Regional study for mapping the natural resources prospect & problem zones using remote sensing and GIS. Geocarto Int 20(3):21–31. doi:10.1080/10106040508542352

    Article  Google Scholar 

  • Joint Research Center (JRC) (2002) Pilot projects on forest fires. European Commission. http://ec.europa.eu/dgs/jrc/index.cfm?id=2080&lang=en.2012

  • Justice CO, Giglio L, Korontzi S, Owens J, Morisette JT, Roy D, Descloitres J, Alleaume S, Petitcolin F, Kaufman Y (2002) The MODIS fire products. Remote Sens Environ 83(1–2):244–262. doi:10.1016/s0034-4257(02)00076-7

    Article  Google Scholar 

  • Keifer M, Caprio A, Lineback P, Folger K (1999) Incorporating a GIS model of ecological need into fire management planning. In: Neuenschwander LF, Ryan KC, Golberg GE (eds) Proceedings of the joint fire science conference, Idaho, 1999, pp 1–8

  • Krivtsov V, Vigy O, Legg C, Curt T, Rigolot E, Lecomte I, Jappiot M, Lampin-Maillet C, Fernandes P, Pezzatti GB (2009) Fuel modelling in terrestrial ecosystems: an overview in the context of the development of an object-orientated database for wild fire analysis. Ecol Model 220(21):2915–2926. doi:10.1016/j.ecolmodel.2009.08.019

    Article  Google Scholar 

  • Kushla JD, Ripple WJ (1997) The role of terrain in a fire mosaic of a temperate coniferous forest. For Ecol Manag 95(2):97–107. doi:10.1016/s0378-1127(97)82929-5

    Article  Google Scholar 

  • Leblon B (2005) Monitoring forest fire danger with remote sensing. Nat Hazards 35(3):343–359. doi:10.1007/s11069-004-1796-3

    Article  Google Scholar 

  • Lein JK, Stump NI (2009) Assessing wildfire potential within the wildland–urban interface: a southeastern Ohio example. Appl Geogr 29(1):21–34. doi:10.1016/j.apgeog.2008.06.002

    Article  Google Scholar 

  • Li L, Song W, Ma J, Satoh K (2009) Artificial neural network approach for modeling the impact of population density and weather parameters on forest fire risk. Int J Wildland Fire 18(6):640–647. doi:http://dx.doi.org/10.1071/WF07136

  • Meng-Lung L, Cheng-Wu C, Jyh-yi S, Yung-Tan L, Chung-Hung T, Yen-Tsui H, Fujun S, Chun-Ying W (2009) Using MODIS-based vegetation and moisture indices for oasis landscape monitoring in an arid environment. In: IEEE international geoscience and remote sensing symposium, 2009, IGARSS 2009, 12–17 July 2009, pp IV-338–IV-341. doi:10.1109/igarss.2009.5417382

  • Merlo M, Rojas Briales E (2000) Public goods and externalities linked to Mediterranean forests: economic nature and policy. Land Use Policy 17(3):197–208. doi:10.1016/s0264-8377(00)00017-x

    Article  Google Scholar 

  • Miliaresis GC, Paraschou CVE (2005) Vertical accuracy of the SRTM DTED level 1 of Crete. Int J Appl Earth Obs Geoinf 7(1):49–59. doi:10.1016/j.jag.2004.12.001

    Article  Google Scholar 

  • MiSRaR (2010) Methodology forest fire risk map. Paper presented at the 1st MiSRaR thematic seminar, Dordrecht, Netherlands

  • Noonan EK (2003) A coupled model approach for assessing fire hazard at point Reyes national seashore: FlamMap and GIS. In: Second international wildland fire ecology and fire management congress and fifth symposium on fire and forest meteorology, Orlando, FL. American Meteorological Society, pp 127–128

  • Pelizzari A, Goncalves R, Caetano M (2008) Information extraction for forest fires management computational intelligence for remote sensing. In: Graña M, Duro RJ (eds) Computational intelligence for remote sensing, vol 133. Studies in computational intelligence. Springer, Berlin/Heidelberg, pp 295–312. doi:10.1007/978-3-540-79353-3_12

  • Prasad VK, Badarinath KVS, Eaturu A (2008) Biophysical and anthropogenic controls of forest fires in the Deccan plateau, India. J Environ Manag 86(1):1–13. doi:10.1016/j.jenvman.2006.11.017

    Article  Google Scholar 

  • Puri K, Areendran G, Raj K, Mazumdar S, Joshi P (2011) Forest fire risk assessment in parts of Northeast India using geospatial tools. J For Res 22(4):641–647. doi:10.1007/s11676-011-0206-4

    Article  Google Scholar 

  • Rothermel RC, Wilson RA, Morris GA, Sckett SS (1986) Modeling moisture content of fine dead wildland fuels: input to the BEHAVE fire prediction system. Forest Service, Intermountain Research Station, Missoula, MT

  • Roy PS (2003) Forest fire and degradation assessment using satellite remote sensing and geographic information system. Paper presented at the satellite remote sensing and GIS applications in agricultural meteorology, Dehra Dun, India

  • Roy PS, Ranganath BK, Diwakar PG, Vohra TPS, Bhan SK, Singh IJ, Pandian VC (1991) Tropical forest typo mapping and monitoring using remote sensing. Int J Remote Sens 12(11):2205–2225. doi:10.1080/01431169108955253

    Article  Google Scholar 

  • Sader SA, Jin S (2006) Feasibility and accuracy of MODIS 250 m imagery for forest disturbance monitoring. Paper presented at the ASPRS.Annual Conference, Reno

    Google Scholar 

  • Sader SA, Bertrand M, Wilson EH (2003) Satellite change detection of forest harvest patterns on an industrial forest landscape. For Sci 49(3):341–353

    Google Scholar 

  • Saglam B, Bilgili E, Dincdurmaz B, Kadiogulari A, Kücük Ö (2008) Spatio-temporal analysis of forest fire risk and danger using LANDSAT imagery. Sensors 8(6):3970–3987

    Article  Google Scholar 

  • Salinero EC, Chuvieco E (2003) Wildland fire danger: estimation and mapping: the role of remote sensing data. World Scientific, Singapore

  • Sebastián-López A, Salvador-Civil R, Gonzalo-Jiménez J, SanMiguel-Ayanz J (2008) Integration of socio-economic and environmental variables for modelling long-term fire danger in Southern Europe. Eur J Forest Res 127(2):149–163. doi:10.1007/s10342-007-0191-5

    Article  Google Scholar 

  • Serrano L, Ustin SL, Roberts DA, Gamon JA, Peñuelas J (2000) Deriving water content of chaparral vegetation from AVIRIS data. Remote Sens Environ 74(3):570–581. doi:10.1016/s0034-4257(00)00147-4

    Article  Google Scholar 

  • Shafiei AB, Akbarinia M, Jalali G, Hosseini M (2010) Forest fire effects in beech dominated mountain forest of Iran. For Ecol Manag 259(11):2191–2196. doi:10.1016/j.foreco.2010.02.025

    Article  Google Scholar 

  • Siachalou S, Doxani.G, Tsakiri-Strati M (2009) Integrating remote sensing processing and GIS to fire risk zone mapping: a case study for the Seih-Sou forest of Thessaloniki. In: Proceeding of ICC 2009, Santiago de Chile, 2009. Satellite imagery

  • Statistical Centre of Iran (SCI) (2009) Survey of Golestan. Publications Information Base Statistical Centre of Iran, Tehran

    Google Scholar 

  • Vasilakos C, Kalabokidis K, Hatzopoulos J, Matsinos I (2009) Identifying wildland fire ignition factors through sensitivity analysis of a neural network. Nat Hazards 50(1):125–143. doi:10.1007/s11069-008-9326-3

    Article  Google Scholar 

  • Wang W, Yang X, Yao T (2011) Evaluation of ASTER GDEM and SRTM and their suitability in hydraulic modelling of a glacial lake outburst flood in southeast Tibet. Hydrol Process. doi:10.1002/hyp.8127

    Google Scholar 

  • Weise DR, Biging GS (1997) A qualitative comparison of fire spread models incorporating wind and slope effects. For Sci 43(2):170–180

    Google Scholar 

  • Wenliang L, Shixin W, Yi Z, Litao W, Shujie Z (2010) Analysis of forest potential fire environment based on GIS and RS. In: 18th International conference on geoinformatics, 2010, 18–20 June 2010, pp 1–6

  • Whelan RJ (1995) The ecology of fire. Cambridge University Press, Cambridge

  • Wilson EH, Sader SA (2002) Detection of forest harvest type using multiple dates of landsat TM imagery. Remote Sens Environ 80(3):385–396. doi:10.1016/s0034-4257(01)00318-2

    Article  Google Scholar 

  • Xiangwei G, Xianyun F, Hongquan X (2011) Forest fire risk zone evaluation based on high spatial resolution RS image in Liangyungang Huaguo Mountain Scenic Spot. In: IEEE International conference on spatial data mining and geographical knowledge services (ICSDM), 2011, June 29 2011–July 1 2011 2011, pp 593–596

  • Yang X, Tang G, Zhang W, Zhu S (2011) Accuracy assessment of ASTER GDEM in North Shaanxi. In: Ruas A (ed) Advances in cartography and GIScience. Volume 2, vol 6. Lecture notes in geoinformation and cartography. Springer, Berlin/Heidelberg, pp 371–382. doi:10.1007/978-3-642-19214-2_25

  • Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng Geol 79:251–266

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Universiti Teknologi Malaysia for providing the International Doctoral Fellowship to Hamed Adab. We are also grateful to USGS and NASA for providing the ASTER, SRTM, and MODIS hot spot data. We appreciate the constructive comments made by the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasturi Devi Kanniah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adab, H., Kanniah, K.D. & Solaimani, K. Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Nat Hazards 65, 1723–1743 (2013). https://doi.org/10.1007/s11069-012-0450-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-012-0450-8

Keywords

Navigation