Block and boulder accumulations along the coastline between Fins and Sur (Sultanate of Oman): tsunamigenic remains?

Abstract

The rocky coastline of the Sultanate of Oman between Fins and Sur is decorated by a number of large blocks and boulder accumulations forming ramparts. The blocks occur as individual rocks of up to 40 tons, as imbricated sets and as “boulder trains.” Landward, the deposits change into a sand/boulder mixture and distal into sands. The coast is made up of Tertiary folded limestones and beach rock of Quaternary age, both also constitute the megaclasts. The transport distance from the fractured seaward platform of 6–10 m above mean sea level varies between 20 m and more than 50 m. We found individual blocks of recent corals and overturned blocks with attached oysters and rock pools. Terrestrial laser scanning was used to analyze geomorphologic features as well as for volumetric estimates of the block weights. Tropical cyclones such as Gonu in 2007 or Phet in 2010 are known to have affected Oman’s coastline in the past. The coastal changes during recent cyclones were minor; therefore, we interpret the block deposits as tsunamigenic. However, this interpretation is not unambiguous. The most likely source area for a tsunami is seen in the Makran Subduction Zone situated in the northern Indian Ocean. Here, at least 4–5 tsunamigenic earthquakes are documented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abellan A, Jaboyedoff M, Oppikofer T, Vilaplana JM (2009) Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event. Nat Hazards Earth Syst Sci 9:365–372. doi:10.5194/nhess-9-365-2009

    Article  Google Scholar 

  2. Ambraseys NN, Melville CP (1982) A history of Persian earthquakes. Cambridge University Press, Cambridge

    Google Scholar 

  3. Barbano MS, Pirrotta C, Gerardi F (2010) Large boulders along the south-eastern Ionian coast of Sicily: storm or tsunami deposits? Mar Geol 275:140–154. doi:10.1016/j.margeo.2010.05.005

    Article  Google Scholar 

  4. Bayer R, Chery J, Tatar M, Vernant P, Abbassi M, Masson F, Nilforoushan F, Doerflinger E, Regard V, Bellier O (2006) Active deformation in Zagros–Makran transition zone inferred from GPS measurements. Geophys J Int 165:373–381. doi:10.1111/j.1365-246X.2006.02879.x

    Article  Google Scholar 

  5. Benner R, Browne T, Brückner H, Kelletat D, Scheffers A (2010) Boulder transport by waves: progress in physical modeling. Z Geomorphol 54(Suppl 3):127–146. doi:10.1127/0372-8854/2010/0054s3-0022

    Article  Google Scholar 

  6. Berninghausen WH (1966) Tsunamis and seismic seiches reported from regions adjacent to the Indian Ocean. B Seismol Soc Am 56:69–74

    Google Scholar 

  7. Blair TC, McPherson JG (1999) Grain-size and textural classification of coarse sedimentary particles. J Sediment Res 69:6–19

    Article  Google Scholar 

  8. Bourgeois J, MacInnes B (2010) Tsunami boulder transport and other dramatic effects of the 15 November 2006 central Kuril Islands tsunami on the island of Matua. Z Geomorphol 54(Suppl 3):175–195. doi:10.1127/0372-8854/2010/0054S3-0024

    Article  Google Scholar 

  9. Buckley ML, Wei Y, Jaffe BE, Watt SG (2011) Inverse modeling of velocities and inferred cause of overwash that emplaced inland fields of boulders at Anegada, British Virgin Islands. Nat Hazards. doi:10.1007/s11069-011-9725-8

  10. Byrne DE, Sykes LR, Davis DM (1992) Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone. J Geophys Res 97:449–478. doi:10.1029/91jb02165

    Article  Google Scholar 

  11. Collinson JD, Thompson DB (1982) Sedimentary structures. George Allen and Unwin, London

    Google Scholar 

  12. Dawson AG, Stewart I (2007) Tsunami deposits in the geological record. Sediment Geol 200:166–183. doi:10.1016/j.sedgeo.2007.01.002

    Article  Google Scholar 

  13. Deems JS, Fassnacht SR, Elder KJ (2006) Fractal distribution of snow depth from LIDAR data. J Hydrometeor 7(2):285–297. doi:10.1175/JHM487.1

    Article  Google Scholar 

  14. DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101:425–478

    Article  Google Scholar 

  15. Dibajnia M, Soltanpour M, Nairn R, Allahyar M (2010) Cyclone Gonu: the most intense tropical cyclone on record in the Arabian Sea. In: Charabi Y (ed) Indian Ocean tropical cyclones and climate change. Springer, Netherlands, pp 149–157

    Google Scholar 

  16. Dominey-Howes D, Cummins P, Burbidge D (2007) Historic records of teletsunami in the Indian Ocean and insights from numerical modeling. Nat Hazards 42:1–17. doi:10.1007/s11069-006-9042-9

    Article  Google Scholar 

  17. Donato SV, Reinhardt EG, Boyce JI, Rothaus R, Vosmer T (2008) Identifying tsunami deposits using bivalve shell taphonomy. Geology 36:199–202. doi:10.1130/G24554A.1

    Article  Google Scholar 

  18. Donato SV, Reinhardt EG, Boyce JI, Pilarczyk JE, Jupp BP (2009) Particle-size distribution of inferred tsunami deposits in Sur lagoon, Sultanate of Oman. Mar Geol 257:54–64. doi:10.1016/j.margeo.2008.10.012

    Article  Google Scholar 

  19. Engel M, May SM (2012) Bonaire’s boulder fields revisited: evidence for Holocene tsunami impact on the Leeward Antilles. Quat Sci Rev. doi:10.1016/j.quascirev.2011.12.011

  20. Etienne S, Buckley M, Paris R, Nandasena AK, Clark K, Strotz L, Chagué-Goff C, Goff J, Richmond B (2011) The use of boulders for characterizing past tsunamis: lessons from the 2004 Indian Ocean and 2009 South Pacific tsunamis. Earth-Sci Rev 107:76–90. doi:10.1016/j.earscirev.2010.12.006

    Article  Google Scholar 

  21. Fournier M, Chamot-Rooke N, Petit C, Fabbri O, Huchon P, Maillot B, Lepvrier C (2007) In situ evidence for dextral active motion at the Arabia–India plate boundary. Nat Geosci. doi:10.1038/ngeo.2007.24

  22. Fournier M, Chamot-Rooke N, Rodriguez M, Huchon P, Petit C, Beslier MO, Zaragosi S (2011) Owen fracture zone: the Arabia-India plate boundary unveiled. Earth Planet Sci Lett 302:247–252. doi:10.1016/j.epsl.2010.12.027

    Article  Google Scholar 

  23. Fritz HM, Borrero JC, Synolakis CE, Yoo J (2006) 2004 Indian Ocean tsunami flow velocity measurements from survivor videos. Geophys Res Lett 3:L24605. doi:10.1029/2006GL026784

    Article  Google Scholar 

  24. Fritz HM, Blount C, Albusaidi FB, Al-Harthy AHM (2010a) Cyclone Gonu storm surge in the gulf of Oman. In: Charabi Y (ed) Indian Ocean tropical cyclones and climate change. Springer, Netherlands, pp 255–263

    Google Scholar 

  25. Fritz HM, Blount CD, Albusaidi FB, Al-Harthy AHM (2010b) Cyclone Gonu storm surge in Oman. Estuar Coast Shelf Sci 86:102–106. doi:10.1016/j.ecss.2009.10.019

    Article  Google Scholar 

  26. Fritz HM, Phillips DA, Okayasu A, Shimozono T, Liu H, Fahad M, Skanavis V, Synolakis CE, Takahashi T (2012) The 2011 Japan tsunami current velocity measurements from survivor videos at Kesennuma Bay using LiDAR. Geophys Res Lett 39:L00G23. doi:10.1029/2011GL050686

  27. Frohlich C, Hornbach MJ, Taylor FW, Shen CC, Moala A, Morton AE, Kruger J (2009) Huge erratic boulders in Tonga deposited by a prehistoric tsunami. Geology 37:131–134. doi:10.1130/G25277A.1

    Article  Google Scholar 

  28. Fujino S, Naruse H, Matsumoto D, Jarupongsakul T, Sphawajruksakul A, Sakakura N (2009) Stratigraphic evidence for pre-2004 tsunamis in southwestern Thailand. Mar Geol 262:25–28. doi:10.1016/j.margeo.2009.02.011

    Article  Google Scholar 

  29. Glennie KW, Hughes Clarke MW, Boeuf MGA, Pilaar WFH, Reinhardt BM (1990) Inter-relationship of Makran-Oman mountains belts of convergence. Geol Soc Lond Spec Publ 49:773–786. doi:10.1144/gsl.sp.1992.049.01.47

    Article  Google Scholar 

  30. Goff J, McFadgen BG, Chagué-Goff C (2004) Sedimentary differences between the 2002 Easter storm and the 15th-century Okoropunga tsunami, southeastern North Island, New Zealand. Mar Geol 204:235–250. doi:10.1016/S0025-3227(03)00352-9

    Article  Google Scholar 

  31. Goto K, Chavanich SA, Imamura F, Kunthasap P, Matsui T, Minoura K, Sugawara D, Yanagisawa H (2007) Distribution, origin and transport process of boulders deposited by the 2004 Indian Ocean tsunami at Pakarang Cape, Thailand. Sediment Geol 202(4):821–837. doi:10.1016/j.sedgeo.2007.09.004

    Article  Google Scholar 

  32. Goto K, Okada K, Imamura F (2009) Characteristics and hydrodynamics of boulders transported by storm waves at Kudaka Island, Japan. Mar Geol 262(1–4):14–24. doi:10.1016/j.margeo.2009.03.001

    Article  Google Scholar 

  33. Goto K, Kawana T, Imamura F (2010a) Historical and geological evidence of boulders deposited by tsunamis, southern Ryukyu Islands, Japan. Earth-Sci Rev 102:77–99. doi:10.1016/j.earscirev.2010.06.005

    Article  Google Scholar 

  34. Goto K, Miyagi K, Kawamata H, Imamura F (2010b) Discrimination of boulders deposited by tsunamis and storm waves at Ishigaki Island, Japan. Mar Geol 269(1–2):34–45. doi:10.1016/j.margeo.2009.12.004

    Article  Google Scholar 

  35. Hansom JD, Barltrop NDP, Hall AM (2008) Modelling the process of cliff-top erosion and deposition under extreme waves. Mar Geol 253:36–50. doi:10.1016/j.margeo.2008.02.015

    Article  Google Scholar 

  36. Heidarzadeh M, Kijko A (2011) A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean. Nat Hazards 56:577–593. doi:10.1007/s11069-010-9574-x

    Article  Google Scholar 

  37. Heidarzadeh M, Pirooz M, Zaker NH, Yalciner AC, Mokhtari M, Esmaeily A (2008a) Historical tsunami in the Makran subduction zone off the southern coasts of Iran and Pakistan and results of numerical modeling. Ocean Eng 35:774–786. doi:10.1016/j.oceaneng.2008.01.017

    Article  Google Scholar 

  38. Heidarzadeh M, Pirooz M, Zaker NH, Synolakis C (2008b) Evaluating tsunami hazard in the northwestern Indian Ocean. Pure Appl Geophys 165:2045–2058. doi:10.1007/s00024-008-0415-8

    Article  Google Scholar 

  39. Heidarzadeh M, Pirooz M, Zaker NH, Yalciner AC (2009) Preliminary estimation of the tsunami hazards associated with the Makran subduction zone at the northwestern Indian Ocean. Nat Hazards 48:229–243. doi:10.1007/s11069-008-9259-x

    Article  Google Scholar 

  40. Hempton MR (1987) Constraints on Arabian plate motion and extensional history of the Red Sea. Tectonics 6:687–705. doi:10.1029/TC006i006p00687

    Article  Google Scholar 

  41. Hoffmeister D, Ntageretzis K, Aasen H, Curdt C, Hadler H, Willershäuser T, Bareth G, Brückner H, Vött A (2011) Quasi-realistic 3D model-based estimations of volume and mass of high-energy dislocated boulders in coastal areas of Greece by the Terrestrial Laser Scanning technique. Z Geomorphol (in press)

  42. Imamura F, Goto K, Ohkubo S (2008) A numerical model for the transport of a boulder by tsunami. J Geophys Res 113:C01008. doi:10.1029/2007JC004170

    Article  Google Scholar 

  43. Inman DL (1949) Sorting of sediments in the light of fluid mechanics. J Sediment Petrol 19:51–70. doi:10.1306/D426934B-2B26-11D7-8648000102C1865D

    Google Scholar 

  44. Jaiswal R, Singh A, Rastogi B (2009) Simulation of the Arabian Sea tsunami propagation generated due to 1945 Makran earthquake and its effect on western parts of Gujarat (India). Nat Hazards 48:245–258. doi:10.1007/s11069-008-9261-3

    Article  Google Scholar 

  45. Jankaew K, Atwater BF, Sawai Y, Choowong M, Charoentitirat T, Martin ME, Prendergast A (2008) Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand. Nature 455:1228–1231. doi:10.1038/nature07373

    Article  Google Scholar 

  46. Jones B, Hunter IG (1992) Very large boulders on the coast of Grand Cayman: the effects of giant waves on rocky coastlines. J Coast Res 8:763–774

    Google Scholar 

  47. Jordan BR (2008) Tsunamis of the Arabian Peninsula—a guide of historic events. Sci Tsunami Hazards 27:31–46

    Google Scholar 

  48. Keating BH, Helsley CE, Wanink M, Walker D (2011) Tsunami deposit research: fidelity of the tsunami record, ephemeral nature, tsunami deposits characteristics, remobilization of sediment by water waves, and boulder movement. In: Mörner NA (ed) The tsunami threat—research and technology. InTech, Rijeka, Croatia, pp 389–422

  49. Khan S, Robinson E, Rowe DA, Coutou R (2010) Size and mass of shoreline boulders moved and emplaced by recent hurricanes, Jamaica. Z Geomorphol N.F. 54 (suppl 3):281–299. doi:10.1127/0372-8854/2010/0054S3-0028

  50. Kopp C, Fruehn J, Flueh ER, Reichert C, Kukowski N, Bialas J, Klaeschen D (2000) Structure of the Makran subduction zone from wide-angle and reflection seismic data. Tectonophysics 329:171–191. doi:10.1016/S0040-1951(00)00195-5

    Article  Google Scholar 

  51. Kortekaas S, Dawson AG (2007) Distinguishing tsunami and storm deposits: an example from Martinhal, SW Portugal. Sediment Geol 200:208–221. doi:10.1016/j.sedgeo.2007.01.004

    Article  Google Scholar 

  52. Kukowski N, Schillhorn T, Flueh ER, Huhn K (2000) Newly identified strike-slip plate boundary in the northeastern Arabian Sea. Geology 28:355–358. doi:10.1130/0091-7613(2000)28<355:nispbi>2.0.co;2

    Article  Google Scholar 

  53. Lisitzin E (1974) Sealevel changes. Elsevier Oceanogr. Series 8. Elsevier Science, Publ. Co., Amsterdam, p 286

  54. Lorang MS (2010) A wave-competence approach to distinguish between boulder and megaclast deposits due to storm waves versus tsunamis. Mar Geol 283:90–97. doi:10.1016/j.margeo.2010.10.005

    Article  Google Scholar 

  55. Mastronuzzi G, Pignatelli C (2011) Determination of Tsunami inundation model using terrestrial laser scanner techniques. In: Mörner NA (ed) The Tsunami threat—research and technology, chapter 19. InTech, Rijeka, Croatia, pp 219–236

  56. Mastronuzzi G, Sansò P (2000) Boulders transport by catastrophic waves along the Ionian coast of Apulia (southern Italy). Mar Geol 170:93–103. doi:10.1016/S0025-3227(00)00068-2

    Google Scholar 

  57. Membery D (2002) Monsoon tropical cyclones: part 2. Weather 57:246–255

    Article  Google Scholar 

  58. Mokhtari M, Abdollahie Fard I, Hessami K (2008) Structural elements of the Makran region, Oman Sea and their potential relevance to tsunamigenesis. Nat Hazards 47:185–199. doi:10.1007/s11069-007-9208

    Article  Google Scholar 

  59. Monecke K, Finger W, Klarer D, Kongko W, McAdoo BG, Moore AL, Sudrajat SU (2008) A 1,000-year sediment record of tsunami recurrence in northern Sumatra. Nature 455:1232–1234. doi:10.1038/nature07374

    Article  Google Scholar 

  60. Morton RA, Gelfenbaum G, Jaffe BE (2007) Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sediment Geol 200:184–207. doi:10.1016/j.sedgeo.2007.01.003

    Article  Google Scholar 

  61. Morton RA, Richmond BM, Jaffe BE, Gelfenbaum G (2008) Coarse-clast ridge complexes of the Caribbean: a preliminary basis for distinguishing tsunami and stormwave origins. J Sediment Res 78:624–637

    Google Scholar 

  62. Murty TS, Bapat A (1999) Tsunamis on the coastline of India. Sci Tsunami Hazards 17:167–172

    Google Scholar 

  63. Murty TS, El-Sabh MI (1984) Cyclones and storm surges in the Arabian Sea: a brief review. Oceanogr Res Pap 31:665–670. doi:10.1016/0198-0149(84)90034-7

    Article  Google Scholar 

  64. Murty TS, Rafiq M (1991) A tentative list of tsunamis in the marginal seas of the north Indian Ocean. Nat Hazards 4:81–83. doi:10.1007/bf00126560

    Article  Google Scholar 

  65. Musson RMW (2009) Subduction in the western Makran: the historian’s contribution. J Geol Soc Lond 166:387–391. doi:10.1144/0016-76492008-119

    Article  Google Scholar 

  66. Nandasena NAK, Paris R, Tanaka N (2011) Reassessment of hydrodynamic equations: minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis). Mar Geol 281:70–84. doi:10.1016/j.margeo.2011.02.005

    Article  Google Scholar 

  67. Neetu S, Suresh I, Shankar R, Nagarajan B, Sharma R, Shenoi S, Unnikrishnan A, Sundar D (2011) Trapped waves of the 27 November 1945 Makran tsunami: observations and numerical modeling. Nat Hazards 59:1609–1618. doi:10.1007/s11069-011-9854-0

    Article  Google Scholar 

  68. Nguyen HT, Fernandez-Steeger TM, Wiatr T, Rodrigues D, Azzam R (2011) Use of terrestrial laser scanning for engineering geological applications on volcanic rock slopes—an example from Madeira Island (Portugal). Nat Hazards Earth Syst Sci 11:1–11. doi:10.5194/nhess-11-1-2011

    Article  Google Scholar 

  69. Noormets R, Crook KAW, Felton EA (2004) Sedimentology of rocky shorelines: 3.: hydrodynamics of megaclast emplacement and transport on a shore platform, Oahu, Hawaii. Sediment Geol 172(1–2):41–65. doi:10.1016/j.sedgeo.2004.07.006

  70. Nott J (2003a) Waves, coastal boulder deposits and the importance of the pre-transport setting. Earth Planet Sci Let 210(1–2):269–276. doi:10.1016/S0012-821X(03)00104-3

    Article  Google Scholar 

  71. Nott J (2003b) Tsunami or storm waves?—Determining the origin of a spectacular field of wave emplaced boulders using numerical storm surge and wave models and hydrodynamic transport equations. J Coast Res 19(2):348–356

    Google Scholar 

  72. Nott J (2007) The importance of quaternary records in reducing risk from tropical cyclones. Palaeogeogr Palaeocl Paleoeco 251:137–149. doi:10.1016/j.palaeo.2007.02.024

    Article  Google Scholar 

  73. Okal EA, Synolakis CE (2008) Far-field tsunami hazard from mega-thrust earthquakes in the Indian Ocean. Geophys J Int 172:995–1015. doi:10.1111/j.1365-246X.2007.03674.x

    Article  Google Scholar 

  74. Okal EA, Fritz HM, Synolakis CE, Raad PE, Al-Shijbi Y, Al-Saifi M (2006) Oman field survey of the 2004 Indian Ocean tsunami. Earthq Spectra 22:S203–S218. doi:10.1193/1.2202647

    Article  Google Scholar 

  75. Pacheco JF, Sykes LR (1992) Seismic moment catalog of large shallow earthquakes, 1900–1989. B Seismol Soc Am 82:1306–1349

    Google Scholar 

  76. Page WD, Alt JN, Cluff LS, Plafker G (1979) Evidence for the recurrence of large-magnitude earthquakes along the Makran coast of Iran and Pakistan. Tectonophysics 52:533–547

    Article  Google Scholar 

  77. Pararas-Carayannis G (2006) The potential of tsunami generation along the Makran subduction zone in the northern Arabian Sea. Case study: the earthquake and tsunami of November 28, 1945. Sci Tsunami Hazards 24:358–384

    Google Scholar 

  78. Paris R, Fournier J, Poizot E, Etienne S, Morin J, Lavigne F, Wassmer P (2010) Boulder and fine sediment transport and deposition by the 2004 tsunami in Lhok Nga (western Banda Aceh, Sumatra, Indonesia): a coupled offshore-onshore model. Mar Geol 268(1–4):43–54. doi:10.1016/j.margeo.2009.10.011

    Article  Google Scholar 

  79. Pendse CG (1948) The Makran earthquake of the 28th of November, 1945. Sci Notes Indian Meteorol Dept 10:141–145

    Google Scholar 

  80. Pignatelli C, Sanso P, Mastronuzzi G (2009) Evaluation of tsunami flooding using geomorphologic evidence. Mar Geol 260(1–4):6–18. doi:10.1016/j.margeo.2009.01.002

    Article  Google Scholar 

  81. Pratson LF, Haxby WF (1996) What is the slope of the U.S. continental slope? Geology 24:3–6. doi:10.1130/0091-7613(1996)024

    Article  Google Scholar 

  82. Prokop A, Panholzer H (2009) Assessing the capability of terrestrial laser scanning for monitoring slow moving landslides. Nat Hazards Earth Syst Sci 9:1921–1928

    Article  Google Scholar 

  83. Rajendran CP, Ramanamurthy MV, Reddy NT, Rajendran K (2008) Hazard implication of the late arrival of the 1945 Makran tsunami. Curr Sci India 95:1739–1743

    Google Scholar 

  84. Rastogi BK, Jaiswal RK (2006) A catalog of tsunamis in the Indian Ocean. Sci Tsunami Hazards 25:128–143

    Google Scholar 

  85. Regard V, Bellier O, Thomas JC, Bourlès D, Bonnet S, Abbassi MR, Braucher R, Mercier J, Shabanian E, Soleymani S, Feghhi K (2005) Cumulative right-lateral fault slip rate across the Zagros–Makran transfer zone: role of the Minab–Zendan fault system in accommodating Arabia–Eurasia convergence in southeast Iran. Geophys J Int 162:177–203. doi:10.1111/j.1365-246X.2005.02558.x

    Article  Google Scholar 

  86. Richmond BM, Watt S, Buckley M, Jaffe BE, Gelfenbaum G, Morton RA (2011) Recent storm and tsunami coarse-clast deposit characteristics, southeast Hawai’i. Mar Geol 283:79–89. doi:10.1016/j.margeo.2010.08.001

    Article  Google Scholar 

  87. Ross DA, Uchupi E, White RS (1986) The geology of the Persian Gulf–Gulf of Oman region: a synthesis. Rev Geophys 24:537–556. doi:10.1029/RG024i003p00537

    Article  Google Scholar 

  88. Scheffers A (2008) Tsunami boulder deposits. In: Shiki T, Tsuji Y, Yamazaki T, Minoura K (eds) Tsunamiites: features and implications. Elsevier, Amsterdam, pp 299–317. doi:10.1016/B978-0-444-51552-0.00017-5

  89. Scheffers A, Kelletat D (2003) Sedimentologic and geomorphologic tsunami imprints worldwide—a review. Earth-Sci Rev 63:83–92. doi:10.1016/s0012-8252(03)00018-7

    Article  Google Scholar 

  90. Scicchitano G, Monaco C, Tortorici L (2007) Large boulder deposits by tsunami waves along the Ionian coast of south-eastern Sicily (Italy). Mar Geol 238:75–91. doi:10.1016/j.margeo.2006.12.005

    Article  Google Scholar 

  91. Shah-hosseini M, Morhange C, Naderi Beni A, Marriner N, Lahijani H, Hamzeh M, Sabatier F (2011) Coastal boulders as evidence for high-energy waves on the Iranian coast of Makran. Mar Geol 290:17–28. doi:10.1016/j.margeo.2011.10.003

    Article  Google Scholar 

  92. Shanmugam G (2011) Process-sedimentological challenges in distinguishing paleo-tsunami deposits. Nat Hazards. doi:10.1007/s11069-011-9766-z

  93. Spiske M, Böröcz Z, Bahlburg H (2008) The role of porosity in discriminating between tsunami and hurricane emplacement of boulders e a case study from the lesser Antilles, southern Caribbean. Earth Planet Sci Lett 268:384–396. doi:10.1016/j.epsl.2008.01.030

    Article  Google Scholar 

  94. Switzer AD, Burston JM (2010) Competing mechanisms for boulder deposition on the southeast Australian coast. Geomorphology 114(1–2):42–54. doi:10.1016/j.geomorph.2009.02.009

    Article  Google Scholar 

  95. Travelletti J, Oppikofer T, Delacourt C, Malet JP, Jaboyedoff M (2008) Monitoring landslide displacements during a controlled rain experiment using a long-range terrestrial laser scanning (TLS). Int Arch Photogramm Remote Sens Spatial Inf Sci XXXVII(B5):485–490

  96. Trujillo E, Ramírez JA, Elder KJ (2007) Topographic, meteorologic, and canopy controls on the scaling characteristics of the spatial distribution of snow depth fields. Water Resour Res 43:1–17. doi:10.1029/2006WR005317

    Article  Google Scholar 

  97. Vella C, Demory F, Canut V, Dussouillez P, Fleury TJ (2011) First evidence of accumulation of mega boulders on the Mediterranean rocky coast of Provence (southern France). Nat Hazards Earth Syst Sci 11:905–914. doi:10.5194/nhess-11-905-2011

    Article  Google Scholar 

  98. Vernant P, Nilforoushan F, Hatzfeld D, Abbassi MR, Vigny C, Masson F (2004) Present-day crustal deformation and plate kinematics in the middle east constrained by GPS measurements in Iran and northern Oman. Geophys J Int 157:381–398. doi:10.1111/j.1365-246X.2004.02222.x

    Article  Google Scholar 

  99. Vita-Finzi C (2001) Neotectonics on the Arabian Sea coasts. Geol Soc Lond Spec Publ 195:87–96. doi:10.1144/GSL.SP.2002.195.01.06

    Article  Google Scholar 

  100. Watt S, Buckley M, Jaffe B (2010) Inland fields of dispersed cobbles and boulders as evidence for a tsunami on Anegada, British Virgin Islands. Nat Hazards. doi:10.1007/s11069-011-9848-y

  101. White RS, Ross DA (1979) Tectonics of the western Gulf of Oman. J Geophys Res 84:3479–3489. doi:10.1029/JB084iB07p03479

    Article  Google Scholar 

  102. Williams DM, Hall AM (2004) Cliff-top megaclast deposits of Ireland, a record of extreme waves in the North Atlantic—storms or tsunamis? Mar Geol 206:101–117. doi:10.1016/j.margeo.2004.02.002

    Article  Google Scholar 

  103. Wyns R, Bechennec F, Le Metour J, Roger J (1992) Geological map of Tiwi—explanatory notes. Ministry of Petroleum and Minerals; Directorate General of Minerals

  104. Wyss M, Al-Homoud AS (2004) Scenarios of seismic risk in the United Arab Emirates, an approximate estimate. Nat Hazards 32:375–393. doi:10.1023/B:NHAZ.0000035556.17601.1f

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the German Research Foundation (DFG-project Re 1361/14-1) and by The Research Council Oman (TRC-grant ORG GUtech EBR 10 013). Dirk Hoffmeister (University of Cologne) is thanked for calculation of wave heights and velocities. The two librarians Cornelia Lutter (RWTH Aachen University) and Barbara Wolf (Kiel University) helped a lot in organizing relevant references which is highly appreciated. The authors are grateful for the English review done by Stefani German and Magdalena Rupprechter (GUtech, Muscat). Two anonymous reviewers are thanked for their constructive feedback which helped to improve the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Hoffmann.

Appendix

Appendix

Equations

For the mass of a submerged boulder being:

$$ mb = Vb\left( {\rho b - \rho w} \right): $$
$$ Ht = \sqrt {\frac{{E_{\text{kin}} }}{{0.125\rho_{w} agl}}} $$
(1)

where \( E_{\text{kin}} = E_{f} + E_{h} = \left( {\mu m_{b} gX_{\text{transport}} } \right) + \left( {m_{b} gH_{\text{uplift}} } \right) \) and \( L = L_{0} \left[ {\tanh \left( {\frac{2\pi d}{{L_{0} }}} \right)^{\frac{3}{4}} } \right]^{\frac{2}{3}} \) and \( L_{0} = \frac{{gT^{2} }}{2\pi } \)

$$ v_{t} = \root{3} \of {{\frac{{E_{\text{kin}} }}{{0.5\rho_{w} acT}}}} $$
(2)
$$ v_{t} = \sqrt {\frac{{2\mu m_{b} g}}{{C_{d} ac\rho_{w} }}} $$
(3)
$$ v_{t} = \sqrt {\frac{{0.5bm_{b} g}}{{0.5C_{d} ac^{2} \rho_{w} }}} $$
(4)

Mathematical symbols

a, b, c :

Axes of a boulder

C d :

Coefficient of drag (1,2)

d :

Water depth

E kin :

Kinetic energy

E f :

Energy of friction

E h :

Potential energy

g :

Earth’s gravity (9.81 m/s2)

H t :

Height of tsunami wave

H uplift :

Height of an uplifted boulder (asl)

L :

Tsunami wave length

L 0 :

Tsunami wave length in deep water

m b :

Mass of boulder

μ:

Coefficient of friction

ρ b :

Density of boulder

ρ w :

Density of seawater (1,020 kg/m3)

T :

Tsunami wave period

tanh :

Tangens hyperbolicus

v t :

Tsunami wave velocity

V b :

Volume of boulder

X transport :

Distance of boulder to coastline

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoffmann, G., Reicherter, K., Wiatr, T. et al. Block and boulder accumulations along the coastline between Fins and Sur (Sultanate of Oman): tsunamigenic remains?. Nat Hazards 65, 851–873 (2013). https://doi.org/10.1007/s11069-012-0399-7

Download citation

Keywords

  • Block deposits
  • Tsunami
  • LiDAR
  • Makran earthquakes
  • Coastal changes