Skip to main content

Risk reduction at the “Last-Mile”: an attempt to turn science into action by the example of Padang, Indonesia

Abstract

More than ever before, the last decade revealed the immense vulnerability of the world’s cities to natural hazards. Neither the tsunami in the Indian Ocean in 2004, the hurricane Katrina in 2005, the cyclone Nargis in 2008 nor the earthquakes in Sichuan in 2008 or in Haiti 2010 found the people, the city administrations or the national or international organizations well prepared in the advent of anticipated but to a large extent disregarded natural disasters. It is evident that the lack of tailor-made disaster management plans and standard operational procedures are often the crucial point in proper risk reduction approaches. This study presents an approach to transfer knowledge of an extensive multidisciplinary scientific study on risk identification into recommendations for risk reduction strategies. The study has been conducted by means of a combination of experts from different scientific communities coming from civil and coastal engineering, remote sensing, social sciences, evacuation modelling and capacity development. The paper presents the results of this research approach and interweaves key findings with recent experiences from an eyewitness on a previous hazard event. Thus, necessary tsunami hazard and vulnerability information as well as valuable insights into preparedness activities have been derived for initiating updated infrastructural designs and practical recommendations for emergency management as well as strategic spatial planning activities at the local scale. The approach was applied in the context of tsunami early warning and evacuation planning in the coastal city of Padang, Western Sumatra, Republic of Indonesia.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Australian Humanitarian Aid (2010) Building back better. http://prattinfographicsworkshop.files.wordpress.com/2010/08/2010-july-29-final-english-padang-housing-and-vulnerability-assessment-hires.pdf

  2. Birkmann J, Dech S, Goseberg N, Lämmel G, Moder F, Nagel K, Oczipka M, Schlurmann T, Setiadi N, Siegert F, Strunz G, Taubenböck H (2008a) Numerical Last-Mile tsunami early warning and evacuation information system. In: International conference on tsunami warning (ICTW), Bali, Indonesia, 12 pp, 12–14 Nov 2008

  3. Birkmann J, Setiadi N, Gebert N (2008b) Socio-economic vulnerability assessment at the local level in context of tsunami early warning and evacuation planning in the city of Padang, West Sumatra. Paper for international conference on tsunami warning, Nusa Dua, Indonesia, 12–14 Nov 2008

  4. Börner A, Hirschmüller H, Scheibe K, Suppa M, Wohlfeil J (2008) MFC—a modular line camera for 3D world modeling. In: Lecture Notes in Computer Science, Berlin

  5. Borrero JC, Sieh K, Chlieh M, Synolakis CE (2006) Tsunami inundation modeling for western Sumatra. Proc Natl Acad Sci USA 103:19673–19677. PNAS online publication, available at http://www.pnas.org

    Google Scholar 

  6. Brune S, Babeyko AY, Gaedicke C, Ladage S (2010) Hazard assessment of underwater landslide-generated tsunamis: a case study in the Padang region, Indonesia. Nat Hazards 53:205–218

    Article  Google Scholar 

  7. Chlieh M, Avouac JP, Sieh K, Natawidjaja DH, Galetzka J (2006) Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements. Geophys Res 2008:113

    Google Scholar 

  8. Flötteröd G, Lämmel G (2010) Evacuation simulation with limited capacity sinks. VSP working paper (10-04). http://svn.vsp.tu-berlin.de/repos/public-svn/publications/vspwp/2010/10-04/

  9. Geiß C, Taubenböck H (2012) Remote Sensing contributing to assess earthquake risk: from a literature review towards a road map. Nat Hazards. doi:10.1007/s11069-012-0322-2

  10. GeoHazards International (GHI) (2012) Saving more than 100,000 lives through a simple, innovative solution: tsunami evacuation raised earth park. http://www.swissre.com/media/news_releases/pr_20100930_padang_terep_project.html

  11. Goseberg N, Schlurmann T (2009) Enhanced hazard mapping on a medium-resolved numerical grid for the city of Padang, West Sumatra. J Ship Technol 5(2):13–21

    Google Scholar 

  12. Goseberg N, Stahlmann A, Schimmels S, Schlurmann T (2009) Highly-resolved numerical modeling of tsunami run-up and inundation scenario in the city of Padang, West Sumatra. In: Proceedings of the 31st international conference on coastal engineering (in press)

  13. Goto C, Ogawa Y, Shuto N, Imamura N (1997) IOC manual

  14. Hamacher HW, Tufekci S (1987) On the use of lexicographical min cost flows in evacuation modeling. Nav Res Logist 34:487–503

    Article  Google Scholar 

  15. Imamura F, Muhari A, Mas E, Pradono MH, Post J, Sugimoto M (2012) Tsunami disaster mitigation by integrating comprehensive countermeasures in Padang City, Indonesia. J Disaster Res 7(1):48–64

    Google Scholar 

  16. Jarvis J, Ratliff H (1982) Some equivalent objectives for dynamic network flow problems. Manag Sci 28:106–108

    Article  Google Scholar 

  17. Karvonen T, Hepojoki A, Kotola J, Huhta H-K (2000) RESCDAM—the use of physical models in dam-break flood analysis. Final report of Helsinki University of Technology

  18. Konca OA, Avouac J-P, Sladen A, Meltzner AJ, Sieh K, Fang P, Li Z, Galetzka J, Genrich J, Chlieh M, Natawidjaja DH, Bock Y, Fielding EJ, Ji C, Helmberger DV (2008) Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature 456(7222):631–635

    Article  Google Scholar 

  19. Lämmel G, Flötteröd G (2009b) Towards system optimum: finding optimal routing strategies in time-dependent networks for large-scale evacuation problems. In: Mertsching B, Hund M, Aziz Z (eds) KI 2009, LNCS (LNAI), vol 5903. Springer, Berlin, pp 532–539

  20. Lämmel G, Klüpfel H, Nagel K (2009a) The MATSim network flow model for traffic simulation adapted to large-scale emergency egress and an application to the evacuation of the Indonesian City of Padang in case of a tsunami warning, pedestrian behavior, Emerald Group Publishing Limited, pp 245–265

  21. Lämmel G, Grether D, Nagel K (2010a) The representation and implementation of time-dependent inundation in large-scale microscopic evacuation simulations. Transp Res Part C Emerg Technol 18:84–98

    Article  Google Scholar 

  22. Lämmel G, Rieser M, Nagel K, Taubenböck H, Strunz G, Goseberg N, Schlurmann T, Klüpfel H, Setiadi N, Birkmann J (2010b) Emergency preparedness in the case of a tsunami—evacuation analysis and traffic optimization for the Indonesian City of Padang, pedestrian and evacuation dynamics 2008. Springer, Berlin, pp 159–170

    Google Scholar 

  23. Lämmel G, Rieser M, Nagel K (2010c) Large scale microscopic evacuation simulation, pedestrian and evacuation dynamics 2008. Springer, Berlin, pp 503–508

    Google Scholar 

  24. Lämmel G, Klüpfel H, Nagel K (2011) Risk minimizing evacuation strategies under uncertainty. Pedestrian and evacuation dynamics 2010. Springer, New York, pp 287–296

    Google Scholar 

  25. Lauterjung J, Rudloff A (2005) GITEWS—the German Indonesian tsunami earlywarning system. EOS Trans Am Geophys Union 86(52), Fall Meet. Suppl

  26. Mas E, Imamura F, Koshimura S (2012) Tsunami departure curves for evacuation simulation. A new approach to model the human behavior in tsunami evacuation. http://www.tsunami.civil.tohoku.ac.jp/hokusai3/J/people/member/erick/Papers/O10.pdf

  27. McCloskey J, Antonioli A, Piatanesi A, Sieh K, Steacy S, Nalbant S, Cocco M, Giunchi C, Huang J, Dunlop P (2008) Tsunami threat in the Indian Ocean from a future megathrust earthquake west of Sumatra. Earth Planet Sci Lett 265(1–2):61–81

    Article  Google Scholar 

  28. McCloskey J, Lange D, Tilmann F, Nalbant S, Bell A, Hillman Natawidjaja D, Rietbrock A (2010) The September 2009 Padang earthquake. Nat Geosci, Correspondence

  29. Mercy Corps (2010) Padang houses by house—a Padang housing and vulnerability assessment. http://prattinfographicsworkshop.files.wordpress.com/2010/08/2010-july-29-final-english-padang-housing-and-vulnerability-assessment-hires.pdf

  30. Moder F, Oczipka M, Siegert F, Lehmann F, Djajadihardaja YS, Klein R, Wahl R (2008) Last-Mile—large-scale topographic mapping of densely populated coasts in support of risk assessment of tsunami hazards. International conference on tsunami warning, Bali, Indonesia, 12–14 Nov 2008

  31. Münich J, Taubenböck H, Stempniewski L, Dech S, Roth A (2006) Remote sensing and engineering: an interdisciplinary approach to assess vulnerability in urban areas. First European conference on earthquake engineering and seismology. Geneva, Switzerland, p 10

  32. Nash J (1951) Non-cooperative games. Ann Math 54(2):286–295

    Article  Google Scholar 

  33. Nielsen O, Roberts S, Gray D, McPherson A, Hitchman A (2005) Hydrodynamic modelling of coastal inundation. In MODSIM 2005 international congress on modelling and simulation, pp 518–523

  34. Schiermeier Q (2009) Tsunami watch. Nat News 426(7276):968–969

    Article  Google Scholar 

  35. Schlurmann T, Siebert M (2010) The capacity building programmes of GITEWS—visions, goals, lessons learned, and re-iterated needs and demands. In: Rudloff A, Lauterjung J, Münch U (eds) Natural Hazards and Earth System Sciences (NHESS), special issue: the GITEWS project (German-Indonesian Tsunami Early Warning System)

  36. Schlurmann T, Kongko W, Goseberg N, Natawidjaja DH, Sieh KE (2010) Near-field tsunami hazard map Padang, West Sumatra: Utilizing high resolution geospatial data and reseasonable source scenarios. In: Proceedings of 32nd international conference on coastal engineering (ICCE2010), American Society of Civil Engineers (ASCE) (in press)

  37. Schneider M, Klein R (2007) Efficient and accurate rendering of vector data on virtual landscapes. J WSCG 15(1–3):59–64

    Google Scholar 

  38. Schneider M, Klein R (2008) Enhancing textured digital elevation models using photographs. In: Proceedings of the fourth international symposium on 3D data processing, visualization and transmission (3DPVT’08)

  39. Setiadi N (2011a) Daily mobility—excursus—Padang, Indonesia. In: Chang Seng SD, Birkmann J (eds) Migration and global environmental change: SR4b: early warning in the context of environmental shocks: demographic change, dynamic exposure to hazards, and the role of EWS in migration flows and human displacement, Foresight Project, Government Office for Science, pp 35–38

  40. Setiadi N (2011b) Establishment of an effective people-centered tsunami early warning by understanding people’s behavior and needs: case study of Padang, West Sumatra. In: Anwar HZ, Harjono H (eds) Perspektif Terhadap Kebencanaan dan Lingkungan di Indonesia: Studi kasus dan pengurangan dampak risikonya. LIPI, Bandung, pp 35–52. ISBN: 978-602-99893-0-4

  41. Setiadi N, Birkmann J (2010) Arbeitspaket 1000: “socio-economic vulnerability indicators” im Rahmen Last-Mile—Evacuation Projekts. United Nations University, Institute for Environment and Human Security (UNU-EHS)

  42. Setiadi N, Taubenböck H, Raupp S, Birkmann J (2010) Integrating socio-economic data in spatial analysis: an exposure analysis method for planning urban risk mitigation. 15th international conference on urban planning and regional development in the information society (REALCORP), Vienna, Austria. GeoMultimedia 2010

  43. Sieh K (2006) Sumatran megathrust earthquakes: from science to saving lives. Philos Trans R Soc 364(1845):1947–1963

    Article  Google Scholar 

  44. Sieh K, Natawidjaja DH, Meltzner AJ, Shen C-C, Cheng H, Li K-S, Suwargadi BW, Galetzka J, Philibosian B, Edwards RL (2008) Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra. Science 322(5908):1674–1678

    Article  Google Scholar 

  45. Sorensen H (2000) Hazard warning systems: review of 20 years of progress. Nat Hazards Rev 1(2):119–125

    Article  Google Scholar 

  46. Spahn H, Hoppe M, Vidiarna HD, Usdianto B (2010) Experience from three years of local capacity development for tsunami early warning in Indonesia: challenges, lessons and the way ahead. Nat Hazards Earth Syst Sci 10:1411–1429

    Article  Google Scholar 

  47. Subarya C, Chlieh M, Prawirodirdjo L, Avouac J-P, Bock Y, Sieh K, Meltzner AJ, Natawidjaja DH, McCaffrey R (2006) Plate-boundary deformation associated with the great Sumatra–Andaman earthquake. Nature 440(7080):46–51

    Article  Google Scholar 

  48. Taubenböck H (2011) The vulnerability of a city—diagnosis from a bird’s eye view. In: Mörner N-A (ed) The tsunami threat—research and technology, pp 107–128. ISBN: 978-953-307-552-5

  49. Taubenböck H, Roth A, Dech S (2007) Linking structural urban characteristics derived from high resolution satellite data to population distribution. In: Coors, Rumor, Fendel & Zlatanova (Eds.) Urban and regional data management. Taylor & Francis Group, London, pp 35–45. ISBN 978-0-41544059-2

  50. Taubenböck H, Goseberg N, Setiadi N, Lämmel G, Moder F, Oczipka M, Klüpfel H, Wahl R, Schlurmann T, Strunz G, Birkmann J, Nagel K, Siegert F, Lehmann F, Dech S, Gress A, Klein R (2009a) Last-Mile preparation for a potential disaster—interdisciplinary approach towards tsunami early warning and an evacuation information system for the coastal city of Padang, Indonesia. Nat Hazards Earth Syst Sci 9:1509–1528

    Article  Google Scholar 

  51. Taubenböck H, Wurm M, Setiadi N, Gebert N, Roth A, Strunz G, Birkmann J, Dech S (2009b) Integrating remote sensing and social science—the correlation of urban morphology with socioeconomic parameters. In: Urban remote sensing joint event, Shanghai, China, p 7

  52. Taubenböck H, Esch T, Wurm M, Roth A, Dech S (2010) Object-based feature extraction using high spatial resolution satellite data of urban areas. J Spat Sci 55(1):117–133

    Article  Google Scholar 

  53. Wahl R, Massing M, Degener P, Guthe M, Klein R (2004) Scalable compression and rendering of textured terrain data. J WSCG 12(3):521–528

    Google Scholar 

  54. Wahl R, Schnabel R, Klein R (2008) From detailed digital surface models to city models using constrained simplification. Photogramm Fernerkun 3:207–215

    Google Scholar 

  55. Wurm M, Taubenböck H, Schardt M, Esch T, Dech S (2011) Object-based image information fusion using multisensor earth observation data over urban areas. Int J Image Data Fusion 2(2):121–147

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the DFG/BMBF special Programme “Geotechnologies”—Early Warning Systems in Earth Management. Sponsorship Code: 03G0643A-E. We would also like to thank our partners in Padang Indonesia from Andalas University and the city municipality of Padang.

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Taubenböck.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Taubenböck, H., Goseberg, N., Lämmel, G. et al. Risk reduction at the “Last-Mile”: an attempt to turn science into action by the example of Padang, Indonesia. Nat Hazards 65, 915–945 (2013). https://doi.org/10.1007/s11069-012-0377-0

Download citation

Keywords

  • Risk
  • Vulnerability
  • Interdisciplinary research
  • Engineering
  • Remote sensing
  • Evacuation modelling
  • Tsunami
  • Natural hazards