Satellite detection of thermal precursors of Yamnotri, Ravar and Dalbandin earthquakes

Abstract

Prior to the occurrence of an earthquake, the region undergoes intensive physiochemical changes. Such changes trigger degassing charge generation leading to positive change in the thermal regime and consequently creation of an earthquake preparation zone. These changes in thermal regime can be detected by the thermal sensors onboard various polar orbiting satellites. Recent researches have demonstrated that thermal infrared sensors onboard satellites (e.g., NOAA-AVHRR and Terra/Aqua-MODIS) can detect temporal transient thermal infrared anomalies prior to an earthquake. The paper presents satellite-based thermal observations associated with Yamnotri (July 22, 2007, India), Ravar (October 14, 2004, Iran) and Dalbandin (January 19, 2011, Pakistan) earthquakes. In the case of Yamnotri earthquake, the region attained around 5–8°C higher than the normal temperature on July 21, 2007 in the area, just 1 day before the earthquake. Whereas, in the case of Ravar earthquake, the region has shown 5–7°C higher temperature on October 06, 2004 about 6 days before the occurrence of the main earthquake event. Dalbandin earthquake showed a maxima on January 17, 2011, just 2 days before the main shock with the raised temperature of around 8–10°C. Another common observation in all these earthquakes is the disappearance of short-term transient thermal anomaly just before the main shock.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Askari G, Hafezi N, Rahimi Tabar MR, Ansari AR (2010) Detection of thermal infrared (TIR) anomalies related to the Ms = 5.1 earthquake on Oct.14, 2004 near Ravar (SE Iran). J Earth Space Phys 35(4):45–60

    Google Scholar 

  2. Becker F, Li ZL (1990) Towards a local split window method over land surfaces. Int J Remote Sens 11:369–393

    Article  Google Scholar 

  3. Choudhury S, Dasgupta S, Saraf AK, Panda SK (2006) Remote sensing observations of pre-earthquake thermal anomalies in Iran. Int J Remote Sens 27(20):4381–4396

    Article  Google Scholar 

  4. Filizzola C, Pergola N, Pietrapersota C, Tramutoli A (2004) Robust satellite techniques for seismically active areas monitoring: a sensitivity analysis on September 7, 1999 Athen’s earthquake. Phys Chem Earth 29:517–527

    Google Scholar 

  5. Freund F (2000) Time resolved study of charge generation and propagation in igneous rocks. J Geophys Res 105:11001–11019

    Article  Google Scholar 

  6. Freund F (2002) Charge generation and propagation in igneous rocks. J Geodyn 33:543–570

    Article  Google Scholar 

  7. Freund F (2003) Rocks that crackle and sparkle and glow: strange pre-earthquake phenomena. J Sci Explor 17(1):37–71

    Google Scholar 

  8. Freund F (2011) Pre-earthquake signals: underlying physical processes. J Asian Earth Sci 41(4–5):383–400

    Article  Google Scholar 

  9. Freund F, Keefner J, Mellon JJ, Post R, Takeuchi A, Lau BWS, La A, Ouzounov D (2005) Enhanced mid-infrared emission from igneous rocks under stress. Geophys Res Abstr 7:09568

    Google Scholar 

  10. Freund F, Takeuchi A, Lau BWS, Al-Manaseer A, Fu CC, Byrant NA, Ozounov D (2007) Stimulated infrared emission from rocks: assessing a stress indicator. Earth 2:1–10

    Article  Google Scholar 

  11. Genzano N, Alianno C, Filizolla C, Pergola N, Tramutoli A (2007) A robust satellite technique for monitoring seismically active areas: the case of Bhuj-Gujrat earthquake. Tectonophysics 431:197–210

    Article  Google Scholar 

  12. Gorny VI, Shilin BV (1992) The thermal methods of remote sensing for study of natural resources. In: The Proceedings of the 18th annual conference of the remote sensing society, University of Dundee, 15–17 Sep, UK, pp 244–263

  13. Gorny VI, Salman AG, Tronin AA, Shilin BB (1988) The earth’s outgoing IR radiation as an indicator of seismic activity. Proc Acad Sci USSR 301:67–69

    Google Scholar 

  14. NOAA (2006) NOAA KLM user’s guide. Available online at: http://www2.ncdc.noaa.gov/docs/klm/html/c7/sec7-1.html. Accessed on 28 Aug 2009

  15. Ouzounov D, Freund FT (2004) Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv Space Res 33:268–273

    Article  Google Scholar 

  16. Panda SK, Choudhury S, Saraf AK, Das JD (2007) MODIS land surface temperature data detects thermal anomaly proceeding 8 October 2005 Kashmir earthquake. Int J Remote Sens 28(20):4587–4596

    Article  Google Scholar 

  17. Qiang Z, Xiu-Deng X, Chang-Gong D (1991) Thermal infrared anomaly—precursor of impending earthquakes. Chin Sci Bull 369(4):319–323

    Google Scholar 

  18. Qiang Z, Kong LC, Zheng LZ, Guo MH, Wang GP, Zhao Y (1997) An experimental study on temperature increasing mechanism of satellite thermo-infrared. Acta Seismol Sin 10(2):247–252

    Article  Google Scholar 

  19. Qiang Z, Chang-gong D, Lingzhi L, Min X, Fengsha G, Tao L, Yong Z, Manhong G (1999) Satellite thermal infrared brightness temperature anomaly image—short-term and impending earthquake precursors. Sci China 42(3):313–324

    Article  Google Scholar 

  20. Saraf AK (2010) Establishment of IITR-satellite earth station. Available online at: http://www.drarunsaraf.tripod.com/iitr-ses.htm. Accessed on 18 Nov 2010

  21. Saraf AK, Choudhury S (2003) Satellite detects surface thermal anomalies associated with the Algerian earthquakes of May 2003. Int J Remote Sens 26(13):2705–2713

    Article  Google Scholar 

  22. Saraf AK, Choudhury S (2005a) NOAA-AVHRR detects thermal anomaly associated with 26 January, 2001 Bhuj Earthquake, Gujarat, India. Int J Remote Sens 26(6):1065–1073

    Article  Google Scholar 

  23. Saraf AK, Choudhury S (2005b) Satellite detects surface thermal anomalies associated with the Algerian earthquakes of May 2003. Int J Remote Sens 26(13):2705–2713

    Article  Google Scholar 

  24. Saraf AK, Choudhury S (2005c) SSM/I applications in studies of thermal anomalies associated with earthquakes. Int J Remote Sens 2(3):197–207

    Google Scholar 

  25. Saraf AK, Rawat V, Banerjee P, Choudhury S, Panda SK, Dasgupta S, Das JD (2008) Satellite detection of earthquake thermal infrared precursors in Iran. Nat Hazard 47:119–135. Also available online at: http://www.springerlink.com/content/683702x74kq785m8/fulltext.pdf. doi:10.1007/s11069-007-9201-7

    Google Scholar 

  26. Saraf AK, Rawat V, Choudhury S, Dasgupta S, Das JD (2009) Advances in understanding of the mechanism for generation of earthquake thermal precursors detected by satellites. Int J Appl Earth Obs Geoinf. doi:http://www.dx.doi.org/10.1016/j.jag.2009.07.003 (in press)

  27. Tramutoli V, DiBello G, Pergola N, Piscitelli S (2001) Robust satellite techniques for remote sensing of seismically active areas. Ann Geofis 44:295–312

    Google Scholar 

  28. Tramutoli V, Cuomo V, Filizzola C, Pergola N, Pietrapertosa C (2005) Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: the cas of Kocaeli (Izmit) earthquake, August 17, 1999. Remote Sens Environ 96:409–426

    Article  Google Scholar 

  29. Tronin AA (1996) Satellite thermal survey—a new tool for the study of seismoactive regions. Int J Remote Sens 17:1439–1455

    Article  Google Scholar 

  30. Tronin AA (2000) Thermal satellite data for earthquake research. IGARSS 2000, IEEE 2000 International Geosciences Symposium. Taking the Pulse of the planet: the role of remote sensing in managing the environment, Honolulu, HI, IEEE

  31. Tronin AA, Hayakawa M, Molchanov OA (2002) Thermal IR satellite data application for earthquake research in Japan and China. J Geodyn 33:519–534

    Article  Google Scholar 

  32. ZiQi G, ShuQuing Q, Chao W, Zhi L, Xiang G, Weiguo Z, Yong Y, Hong Z, Jishuang Q (2004) The mechanism of earthquake’s thermal infrared radiation precursory on remote sensing images. Available online at: http://www.ieeexplore.ieee.org/iel5/7969/22039/01026436.pdf. Accessed on 17 Nov 2010

Download references

Acknowledgments

We are greatly indebted to the Ministry of Earth Sciences (Seismology Division), New Delhi, and Indian Institute of Technology Roorkee (Dean, Finance and Planning) for financial assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arun K. Saraf.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Saraf, A.K., Rawat, V., Das, J. et al. Satellite detection of thermal precursors of Yamnotri, Ravar and Dalbandin earthquakes. Nat Hazards 61, 861–872 (2012). https://doi.org/10.1007/s11069-011-9922-5

Download citation

Keywords

  • Earthquake
  • Thermal infrared anomalies
  • Land surface temperature