Based on the individual contributions to this special issue, some general challenges for assessing vulnerability in an interdisciplinary context are outlined with respect to components of vulnerability, as well as methods and the target dimension of vulnerability assessment.
Components of vulnerability
Table 1 reveals that four articles consider different components of vulnerability, three focus on the susceptibility of the built environment (mostly residential buildings) and two on coping and adaptation capacities of people. A closer look at the papers shows that most definitions share common ground but also reveal distinct differences between on how single components are defined and demarcated from each other. This applies particularly to the separation between hazard, exposure and susceptibility/sensitivity and on how the individual components are operationalised in the respective research projects.
As outlined by David Alexander (‘a hazard is not hazardous unless it threatens something; [and] vulnerability does not exist unless some elements at risk are threatened by something’, Alexander 2004, p. 267, original emphasis), exposure can be seen as the relationship of elements at risk to the hazard and is therefore somehow a bridging element between the natural and social scientific part of risk. However, as outlined by Hufschmidt in her contribution to this issue, the term is differently understood and operationalised in vulnerability analyses. Some contributions such as Papathoma-Köhle et al. or Totschnig et al. consider exposure as being external as part of their analysis, but do not define it as part of vulnerability itself. Vulnerability, in this understanding, is mostly dedicated to the susceptibility component. On the other hand, contributions such as Braun and Aßheuer, Willroth et al. and Scheuer et al. explicitly include exposure in their definition of vulnerability and therefore refrain from a strict differentiation of hazard and vulnerability. Both groups of contributions, however, end up with quite similar assessments. Although their definition of vulnerability is different, the scope of the studies is relatively similar: Elements at risk are set in relation to a hazard, and their susceptibility against such hazards is analysed in order to assess the potential impacts on the system.
One could argue that a strict definition and use of the term vulnerability could solve these differences. However, the discussion during the last decades and also the contributions to this special issue underline that the desire for a one common definition of vulnerability is rather illusionary, as a definition of a research object depends largely on the purpose or on the interest of the analysis, and this interest differs between disciplines and their representatives.
Therefore, from our point of view, it is important to clearly describe and define which components of risk and/or vulnerability assessment are considered in each individual study. These components may include (1) the frequency and magnitude of a hazard, (2) elements at risk and their exposure to this hazard, (3) the susceptibility of these elements at risk to the hazard and (4) the coping and adaptation capacities of various categories of elements at risk. As seen above, these different components could be seen either internal or external to vulnerability, but if they are clearly named and described, this might contribute to a reduction of confusion and possibly contribute to a mutual understanding between disciplines/schools of thoughts.
Methods of vulnerability assessment
The term vulnerability is conceptualised in hazard and disaster management in various ways. As a consequence, the notion of vulnerability is as divergent as the methods and theories of disciplines involved in vulnerability research. Social scientists and natural scientists often address different issues when they are using the term vulnerability. Consequently, participatory, bottom-up oriented vulnerability assessments and deductive top-down approaches to vulnerability have been considered for quite a long time as rather opposing each other. While participatory approaches aim at empowering people by trying to stimulate the development of locally owned and embedded adaptation and coping strategies, deductive approaches are targeted to quantify the vulnerability of elements and people at risk in order to develop a detached and comparable vulnerability measure.
Thereby, it is often argued that taking the perspective of natural sciences and consequently neglecting any social implications arising from hazards, vulnerability is considered as a functional relationship between a process magnitude, the resulting physical impact on elements at risk, and exposed values. As a result, loss functions such as typically used in insurance business or in economics is deduced. In contrast, if the concept of vulnerability is defined anthropocentrically by taking a perspective from social sciences, people’s exposition to and capacity to cope with or adapt to a hazard is of concern. In this view, vulnerability is mostly considered as a result of social processes and structure (and not of natural processes). It is hence concerned with how vulnerable conditions are socially produced and constructed. Apparently, such an understanding not only uses different methods but is also based on very different ontological and epistemological assumptions.
Target dimension of vulnerability assessment
The objective of an integrative vulnerability assessment is to include all relevant impacts on a system. Following the concept of sustainability, this would mean that all dimensions of vulnerability, i.e., economic, social as well as ecological impacts of a certain hazard should be considered. However, this should not lead to a division of work between disciplines in a sense that economists only focus on damages to the economy, social scientists centre on effects on people and ecologists deal with environmental consequences. In contrast, the challenge from an interdisciplinary research would be to bring together the methodological expertise of different disciplines in order to come to an integrated assessment of vulnerability or risk. Apparently, such an exercise is demanding both resource wise and intellectually as no discipline could claim a position of superiority. A central task could hence be to start thinking about a common definition of the problem to exchange views about definitions, concept and underlying worldviews and values. Above all, such an endeavour would need to be based on mutual respect among disciplines and intellectual curiosity.
Integrating natural and social sciences approaches to vulnerability
What this special issue also testimonies is the challenge of integration between natural and/or social scientific approaches in the field of vulnerability research. Only a few contributions strictly attempt to overcome the divide between both approaches, whereas all contributors attempt to develop some kind of integrative perspective (e.g. methodologically) on vulnerability. This might appear as particularly surprising against the background that most authors are affiliated with academic departments and institutions that often exhibit interdisciplinary and even multi-disciplinary research environments.
It has often been argued (also by geographers) that the discipline of geography is particularly appropriate for such a combined and therefore interdisciplinary field of research due to an exceptional capacity of problem-solving. This capacity is justified with the focus on the interrelation of the social and physical environment and studies on the spatial and temporal distribution of phenomena, processes and features. The possibility that physical and human geographers could share methods and techniques has been debated for a long time, and many connections have been proposed (Viles 2005). Because physical geographers are scientists who largely study natural phenomena, and human geographers generally study human communities, geography as a whole spreads over the divide between the sciences and the arts, in terms of both subject matter and approaches to study (Viles 2005).
However, if geography shall perform a bridge function, then both dimensions, the natural scientific and the social scientific, have to be at least expanded to other fields of geographic research, which is rooted in the systematic analysis of interrelations between multiple spheres of geographic discipline (Hartshorne 1959). Other sources, however, argue that it is the lack in distinct theories and constructs of ideas resulting from the relatively shallowness in geographical conceptualisations that weakens the discipline in competition to related disciplines such as sociology, economy, psychology, geology and physics (Clifford 2002; Turner II 2002; Johnston 2005).
Yet, it is not an integration of methods and concepts that provide the disciplinary enclosure in natural hazard risk research; instead, it is the interaction between methods applied in the sciences and the arts. As argued by Weichhart (2005) by the metaphor of human–environment interaction, research on natural hazards and risk cannot be simply undertaken by reintegrating natural sciences and social sciences, and as such physical and human geography, it is rather the construction of a ‘third pillar’ between the two poles of science as an independent object of knowledge gain which is characterised by a complex of specific research questions. These specific research questions will not be comprehensively answered by applying individual methods rooted either in physical geography or in human geography, or in natural sciences and social sciences.
Moreover, and this is also shown by the contributions to this special issue, such a strict division between approaches based on physical or human geography often does not exist: By applying methods rooted in economics or economic geography, contributions from Scheuer et al. and Willroth et al. are based on a similar understanding of risk and vulnerability as natural scientific approaches. Natural scientific contributions such as Totschnig et al. make use of economic methods in order to provide a bridge function to social sciences. This connectivity between natural scientific and approaches from economics can be explained by the quite similar understanding of the concept of risk (see e.g. Banse and Bechmann 1998). Both disciplines understand risk as a function of probability and consequences which can be measured and quantified.
However, a task to be further elaborated is to explore how some key concepts could provide the basis for both poles of geography (Massey 2001), such as the concept of space (Golledge 2002; Unwin and Rose 2004) as a fundamental in both human geography (Thrift 2003) and physical geography (Kent 2003). Another such concept is time, which involves the paradigms of dynamical systems, nonlinearities, chaotic behaviour and panarchy in physical geography (Gregory 2000; Thornes 2003), and the issue of (social) change with respect to human geography (Taylor 2003). General points of commonality are issues of scale and hierarchies, and the increasing use of dynamic rather than equilibrium ideas and metaphors in both physical and human geography (Viles 2005).
Nevertheless, this special issue documents that representatives of different disciplines, and as such scholars trained in or working in the field of physical geography, social geography, and economic geography, have started communicating with each other and to present their views, definitions, insights and results in common sessions and conferences. This is surely the first step for any kind of the interdisciplinary research endeavour targeted. Whether and to what extent geography is able to act as a mediator or negotiator between the two main groups of science and whether geography is able to link the spheres of nature and society in an integrative way (Weichhart 2008) is a matter of future forms of collaboration. This statement was also a major conclusion from the underlying session held at the German Geographers Conference in Vienna.
Finally, we would like to express our sincere thanks to the management and editorial board of the Natural Hazards journal, above all Petra van Steenbergen, Senior Publishing Editor at Springer, Thomas Glade as the Coordinating Editor, as well as Preetha Arulmohan and Ayrene Dialogo from the Editorial Office of Springer. Moreover, we would like to acknowledge the sincere efforts of all the reviewers who supported this special issue with their knowledge on different aspects of vulnerability and their constructive criticism that helped us to further develop the individual argumentations in the papers. We would also like to thank all the colleagues who contributed to this special issue, above all for their patience during the process of manuscript production and revision.