Skip to main content
Log in

The structural vulnerability in the framework of natural hazard risk analyses and the exemplary application for storm loss modelling in Tyrol (Austria)

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

In the context of natural hazard-related risk analyses, different concepts and comprehensions of the term risk exist. These differences are mostly subjected to the perceptions and historical backgrounds of the different scientific disciplines and results in a multitude of methodological concepts to analyse risk. The target-oriented selection and application of these concepts depend on the specific research object which is generally closely connected to the stakeholders’ interests. An obvious characteristic of the different conceptualizations is the immanent various comprehensions of vulnerability. As risk analyses from a natural scientific-technical background aim at estimating potential expositions and consequences of natural hazard events, the results can provide an appropriate decision basis for risk management strategies. Thereby, beside the preferably addressed gravitative and hydrological hazards, seismo-tectonical and especially meteorological hazard processes have been rarely considered within multi-risk analyses in an Alpine context. Hence, their comparative grading in an overall context of natural hazard risks is not quantitatively possible. The present paper focuses on both (1) the different concepts of the natural hazard risk and especially their specific expressions in the context of vulnerability and (2) the exemplary application of the natural scientific-technical risk concepts to analyse potential extreme storm losses in the Austrian Province of Tyrol. Following the corresponding general risk concept, the case study first defines the hazard potential, second estimates the exposures and damage potentials on the basis of an existing database of the stock of elements and values, and third analyses the so-called Extreme Scenario Losses (ESL) considering the structural vulnerability of the potentially affected elements at risk. Thereby, it can be shown that extreme storm events can induce losses solely to buildings and inventory in the range of EUR 100–150 million in Tyrol. However, in an overall context of potential extreme natural hazard events, the storm risk can be classified with a moderate risk potential in this province.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Personal communication, Heneka and Hofherr (2007).

References

  • Albeverio S, Jentsch V, Kantz H (eds) (2005) Extreme events in nature and society. Springer, Heidelberg

    Google Scholar 

  • Albrecht A, Schindler D, Grebhan K, Kohnle U, Mayer H (2009) Sturmaktivität über der nordatlantisch-europäischen Region vor dem Hintergrund des Klimawandels—Eine Literaturübersicht. Allgemeine Forst- und Jagdzeitung 180:109–118

    Google Scholar 

  • Alexander D (2005) Vulnerability to landslides. In: Glade T, Anderson M, Crozier M (eds) Landslide hazard and risk. Wiley, Chichester, pp 175–198

    Google Scholar 

  • Allen K (2003) Vulnerability reduction and the community-based approach. In: Pelling M (ed) Natural disasters and development in a globalising world. Routledge, London, pp 170–184

    Google Scholar 

  • Amt der Tiroler Landesregierung (2009) Statistisches Handbuch für Tirol 2009. Amt der Tiroler Landesregierung, Innsbruck

    Google Scholar 

  • Angermann A (1993) Sturmszenarien und Schadenshäufigkeit von Stürmen über Deutschland. Diploma thesis, University of Cologne

  • Banse G, Bechmann G (1998) Interdisziplinäre Risikoforschung. Eine Bibliographie. Westdeutscher Verlag GmbH, Wiesbaden

    Google Scholar 

  • Barroca B, Bernadara P, Mouchel JM, Huber G (2006) Indicators for identification of urban flooding vulnerability. Nat Hazards Earth Syst Sci 6:553–561

    Article  Google Scholar 

  • Beck U (1986) Risikogesellschaft—Auf dem Weg in eine andere Moderne. Suhrkamp, Frankfurt aM

    Google Scholar 

  • Beck U (2007) Weltrisikogesellschaft—Auf der Suche nach der verlorenen Sicherheit. Suhrkamp, Frankfurt aM

    Google Scholar 

  • Bengtsson L, Hodges KI, Roeckner E, Brokopf R (2006) On the natural variability of the pre-industrial European climate. Clim Dyn 27:743–760

    Article  Google Scholar 

  • Bertrand D, Naaim M, Brun M (2010) Physical vulnerability of reinforced concrete building impacted by snow avalanches. Nat Hazards Earth Syst Sci 10:1531–1545

    Article  Google Scholar 

  • Borter P (1999) Risikoanalyse bei gravitativen Naturgefahren. Methoden. Swiss Agency for the Environment, Forests and Landscape BUWAL, Bern

  • Brasseur O (2001) Development and application of a physical approach to estimating wind gusts. Mon Weather Rev 129:5–25

    Article  Google Scholar 

  • Chock G (2005) Modelling of hurricane damage for Hawaii residential construction. J Wind Eng Ind Aerod 93:603–622

    Article  Google Scholar 

  • Cutter S (1996) Vulnerability to environmental hazards. Prog Human Geog 20:529–539

    Article  Google Scholar 

  • Cutter S (2003) The vulnerability of science and the science of vulnerability. Ann Assoc Am Geogr 93:1–12

    Article  Google Scholar 

  • Davenport AG, Grimmond CSB, Oke TR, Wieringa J (2000) Estimating the roughness of cities and scattered country. Proceedings of the 12th conference on applied climatology, Asheville, 8–11 May 2000, pp 96–99

  • Dikau R, Weichselgartner J (2005) Der unruhige Planet—Der Mensch und die Naturgewalten. Wissenschaftliche Buchgesellschaft, Wiesbaden

    Google Scholar 

  • Dobesch H, Kury Y (1997) Wind Atlas for the Central European countries Austria, Croatia, Czech Republic, Hungary, Slovak Republic and Slovenia. Beiträge zur Meteorologie und Geophysik, Heft

    Google Scholar 

  • Dorland C, Tol R, Palutikof J (1999) Vulnerability of the Netherlands and Northwest Europe to storm and damage under climate change. Clim Change 43:513–535

    Article  Google Scholar 

  • Dotzek N, Berz G, Rauch E, Peterson RE (2000) Die Bedeutung von Johannes P. Letzmanns „Richtlinien zur Erforschung von Tromben, Tornados, Wasserhosen und Kleintromben” für die heutige Tornadoforschung. Meteor Z 9:165–174

    Google Scholar 

  • Douglas J (2007) Physical vulnerability modelling in natural hazard risk assessment. Nat Hazards Earth Syst Sci 7:283–288

    Article  Google Scholar 

  • EEA European Environmental Agency (ed) (2006) Land accounts for Europe 1990–2000—towards integrated land and ecosystem accounting. EEA report no 11/2006, EEA, Cophenhagen

  • Egli T (2000) Risikobewertung: Aufgabe von Sicherheitsbehörden und Legitimation von Betroffenen. Proceedings of the 9th congress INTERPRAEVENT, Villach, 26–30 June 2000, pp 241–251

  • Felgentreff C, Dombrovsky WR (2008) Hazard-, Risiko- und Katastrophenforschung. In: Felgentreff C, Glade T (eds) Naturrisiken und Sozialkatastrophen. Springer, Heidelberg, pp 13–29

    Google Scholar 

  • Finnis J, Holland MM, Serrez MC, Cassano JJ (2007) Response of northern hemisphere extratropical cyclone activity and associated precipitation to climate change, as represented by the community climate system model. J Geophys Res. doi:10.1029/2006JG000286

  • Friedmann D (1984) Natural hazard assessment for an insurance program. Geneva Pap Risk Ins 9:57–128

    Google Scholar 

  • Fuchs S (2009) Susceptibility versus resilience to mountain hazards in Austria—paradigms of vulnerability revisited. Nat Hazards Earth Syst Sci 9:337–352

    Article  Google Scholar 

  • Fuchs S, Heiss K, Hübl J (2007) Towards an empirical vulnerability function for use in debris flow risk assessment. Nat Hazards Earth Syst Sci 7:495–506

    Article  Google Scholar 

  • Gabl K (2008) Maximum credible gust wind speeds in Tyrol. Internal report and personal communication. ZAMG—Central Institute for Meteorology and Geodynamics, Innsbruck

  • Glade T (2003) Vulnerability assessment in landslide risk analysis. Die Erde 134:123–146

    Google Scholar 

  • Goyette S, Beniston M, Caya D, Laprise R, Jungo P (2001) Numerical investigation of an extreme storm with the Canadian regional climate model: the case study of windstorm VIVIAN, Switzerland, February 27, 1990. Clim Dynam 18:145–168

    Article  Google Scholar 

  • Grossi P, Kunreuther H, Windeler D (2005) An introduction to Catastroph models and insurance. In: Grossi P, Kunreuther H (eds) Catastrophe modeling: a new approach to managing risk. Springer, Heidelberg, pp 23–42

    Chapter  Google Scholar 

  • Gruber C (2005) Evaluierung von modellierten Windfeldern im Alpenraum. Diploma thesis, University of Vienna

  • Hart G (1976) Natural hazards: Tornado, Hurrican, severe wind loss models. Technical report NTIS no. PB 294594/AS, National Science Foundation, Redondo Beach

  • Heinimann HR, Hollenstein K, Kienholz H, Krummenacher B (1998) Methoden zur Analyse und Bewertung von Naturgefahren. Swiss Agency for the Environment, Forests and Landscape BUWAL, Bern

  • Heneka P (2007) Schäden durch Winterstürme—das Schadensrisiko von Wohngebäuden in Baden-Württemberg. Dissertation, University of Karlsruhe

  • Heneka P, Buck B (2008) A damage model fort he assessment of storm damage to buildings. Eng Struct 30:3603–3609

    Article  Google Scholar 

  • Heneka P, Hofherr T, Ruck B, Kottmeier C (2006) Winter storm risk of residential structures—model development and application to the German state of Baden-Württemberg. Nat Hazards Earth Syst Sci 6:721–733

    Article  Google Scholar 

  • Hofherr T (2007) Countrywide storm hazard map for Germany. Proceedings of the 8 forum DKKV/CEDIM: disaster reduction in climate change, 15–16 October 2007. Available via www.cedim.de/download/24_Hofherr.pdf. Accessed 10 May 2008

  • Hollenstein K (1997) Analyse, Bewertung und Management von Naturrisiken. vdf, Zurich

    Google Scholar 

  • Hollenstein K (2005) Reconsidering the risk assessment concept: standardizing the impact description as a building block for vulnerability assessment. Nat Hazards Earth Syst Sci 5:301–307

    Article  Google Scholar 

  • Hollenstein K, Bieri O, Stückelberger J (2002) Modellierung der Vulnerabilität von Schadenobjekten gegenüber Naturgefahrenprozessen. ETHZ Forstliches Ingenieurwesen, Zurich

    Google Scholar 

  • Huang Z, Rosowsky D, Sparks P (2000) Hurricane hazard assessment system for residential structures in South Carolina. Environ Eng Geosci 7:57–65

    Article  Google Scholar 

  • Hurrel JW, Kushnir Y, Ottersen G, Visbeck M (2001) An overview on the north Atlantic oscillation. In: Hurrel JW, Kushnir Y, Ottersen G, Visbeck M (eds) The north Atlantic oscillation: climatic significance and environmental impacts. American Geophysical Union, Washington, pp 1–36

    Google Scholar 

  • Huttenlau M, Stötter J (2008) Ermittlung des monetären Werteinventars als Basis von Analysen naturgefahreninduzierter Risiken in Tirol (Österreich). Geographica Helvetica 2:85–93

    Google Scholar 

  • Huttenlau M, Stötter J (2009) Kumulatives Schadenpotenzial von worst-case Szenarien in Tirol. Final project report, alpS—Centre for Natural Hazard and Risk Management, Innsbruck

  • IRGC International Rsik Governance Council (2005) White paper on risk governance towards an integrative approach. Available via http://www.irgc.org/IMG/pdf/IRGC_WP_No_1_Risk_Governance__reprinted_version_pdf. Accessed 20 Feb 2011

  • Jakobeit J, Wanner H, Luterbacher J, Beck C, Philipp A, Sturm K (2003) Atmospheric circulation variability in the north-Atlantic-European area since the mid-seventeenth century. Clim Dyn 20:341–352

    Google Scholar 

  • Kalthoff N, Bischoff-Gauß I, Friedler F (2003) Regional effects of large-scale extreme wind events over orographically structured terrain. Theor Appl Climatol 74:53–67

    Article  Google Scholar 

  • Kasperski M (2002) A new wind zone map of Germany. J Wind Eng Ind Aerod 90:1271–1287

    Article  Google Scholar 

  • Kasperson RE, Renn O, Slovic P, Brown HS, Emel J, Goble R, Kasperson JX, Ratick S (1988) The social amplification of risk: a conceptual framework. Risk Anal 8:177–187

    Article  Google Scholar 

  • Katz R (2002) Stochastic modelling of hurricane damage. J Appl Meteorol 47:754–762

    Article  Google Scholar 

  • Kienholz H (2005) Analyse und Bewertung alpiner Naturgefahren. Eine Daueraufgabe im Rahmen des integralen Risikomanagements. Geographica Helvetica 1:3–15

    Google Scholar 

  • Klawa M (2001) Extreme Sturmereignisse in Deutschland: Entwicklung, Zusammenhang mit der nordatlantischen Oszillation und Auswirkungen auf die Versicherungswirtschaft. Dissertation, University of Cologne

  • Klawa M, Ulbricht U (2003) A model for the estimation of storm losses and the identification of severe winter storms in Germany. Nat Hazard Earth Syst 3:725–732

    Article  Google Scholar 

  • Lang K (2002) Seismic vulnerability of existing buildings. Dissertation, ETH Zurich

  • Leckebusch GC, Ulbricht U (2004) On the relationship between cyclones and extreme windstorm events over Europe under climate change. Global Planet Change 44:181–193

    Article  Google Scholar 

  • Leckebusch GC, Koffi B, Ulbrich U, Pinto JG, Spangehl T, Zacharias S (2006) Analysis of frequency and intensity of European winter storm events from a multi-model perspective, at synoptic and regional scales. Climate Res 31:59–74

    Article  Google Scholar 

  • Leicaster R, Reardon G (1976) A statistical analyses of the structural damage by cyclone Tracy. Civil Eng Trans 18:50–54

    Google Scholar 

  • Leicaster R, Bubb C, Dorman C, Beresdorf F (1979) An assessment of potential cyclone damage to dwellings in Australia. Proceedings of the 5th international conference on wind engineering, Fort Collins, 8–14 July 1979, pp 23–36

  • Lotteraner C (2009) Synoptisch-klimatologische Auswertung von Windfeldern im Alpenraum. Dissertation, University of Vienna

  • Makkonen L (2008) Problems in the extreme value analysis. Struct Saf 30:405–419

    Article  Google Scholar 

  • Marshall J, Kushnir Y, Battistic D, Chang P, Czaja A, Dickson R, Hurrel J, McCartney M, Saravanan R, Visbeck M (2001) North atlantic climate variability: phenomena, impacts and mechanisms, review. Int J Climatol 21:1863–1898

    Article  Google Scholar 

  • Müller-Mahn D (2005) Von “Naturkatastrophen” zu “Complex Emergencies”—Die Entwicklung integrativer Forschungsansätze im Dialog mit der Praxis. In: Müller-Mahn D, Wardenga U (eds) Möglichkeit und Grenzen integrativer Forschungsansätze in Physischer Geographie und Humangeographie. Leibnitz Institut für Länderkunde, Leipzig, pp 69–78

  • Müller-Mahn D (2007) Perspektiven der geographischen Risikoforschung. Geographische Rundschau 10:4–11

    Google Scholar 

  • Munich Re (1993) Winter storms in Europe: analysis of 1990 losses and future loss potentials. Münchener Rückversicherungsgesellschaft, Munich

    Google Scholar 

  • Munich Re (2001) Winter storms in Europe (II): analysis of 1999 losses and loss potentials. Münchener Rückversicherungsgesellschaft, Munich

    Google Scholar 

  • Murlidharan T, Durgaprasad J, Appa Rao T (1997) Knowledge-based expert system for damage assessment and vulnerability analysis of structures subjected to cyclones. J Wind Eng Ind Aerod 72:479–491

    Article  Google Scholar 

  • Notfallvorsorge (2010) Themenheft: Bedrohung und Gefährdung in Europa—damit müssen wir rechnen. Die Zeitschrift für Bevölkerungsschutz und Katastrophenhilfe, Walhalla Fachverlag, Regensburg

  • Palutikof JP, Brabson BB, Lister DH, Adcock ST (1999) A review of methods to calculate extreme winds. Meteorol Appl 6:19–32

    Article  Google Scholar 

  • Penning-Rowsell EC, Johnson C, Tunstall S, Morris J, Coker A, Green C (2003) The benefits of flood and coastal defence: technique and data for 2003. Middlesex University Press, Middlesex

    Google Scholar 

  • Perrin O, Rootzén H, Taesler R (2006) A discussion of statistical methods used to estimated extreme wind speeds. Theor Appl Climatol 85:203–215

    Article  Google Scholar 

  • Pinelli J, Simiu E, Gurley K, Subramanian C, Zhang L, Cope A (2004) Hurricane damage prediction model for residential structures. J Struct Eng 130:1685–1691

    Article  Google Scholar 

  • Pinot JG, Fröhlich L, Leckebusch GC, Ulbrich U (2007) Property loss potentials for European mid-latitude storms in a changing climate. Geophys Res Lett 34. doi:10.1029/2006GL027663

  • Pohl J (2008) Die Entstehung der geographischen Hazardforschung. In: Felgentreff C, Glade T (eds) Naturrisiken und Sozialkatastrophen. Springer, Heidelberg, pp 47–62

    Google Scholar 

  • Renn O (2008a) Concepts of risk: an interdisciplinary review. Part 1: disciplinary risk concepts. GAiA 17(2):50–66

    Google Scholar 

  • Renn O (2008b) Concepts of risk: an interdisciplinary review. Part 2: integrative approaches. GAiA 17(2):196–204

    Google Scholar 

  • Rootzén H, Tajvidi N (1997) Extreme value statistic and wind storm losses: a case study. Scand Act J 1:70–94

    Google Scholar 

  • Sanders D (2002) The management of losses arising from extreme events. Convention General Insurance Study Group GIRO, London

    Google Scholar 

  • Sill B, Kozlowski R (1997) Analysis of storm-damage factors for low-rise structures. J Perf Construc Fac 11:168–177

    Article  Google Scholar 

  • Smith K, Ward R (1998) Floods: physical processes and human impacts. Wiley, Chichester

    Google Scholar 

  • Spichtig S, Bründl M (2008) Verletzlichkeit bei gravitativen Naturgefahren—eine Situationsanalyse. National Platform for Natural Hazards PLANAT, Bern

    Google Scholar 

  • Straßburger D (2006) Risk management and solvency: mathematical method in theory and practise. Dissertation, University of Oldenburg

  • Stull RB (2000) Meteorology for scientists and engineers. Brooks/Cole, Pacific Grove

    Google Scholar 

  • Swiss Re (1993) Stürme über Europa—Schäden und Szenarien. Schweizer Rückversicherungs-Gesellschaft, Zurich

    Google Scholar 

  • Thywissen K (2006) Components of risk—a comparative glossary. Source education-publication series of UNU-EHS No 2/2006, UNU Institute for Environment and Human Security, Bonn

  • Troen I, Petersen EL (1989) European wind atlas. Risø National Labratory, Roskilde

    Google Scholar 

  • Ulbricht U, Fink AH, Klawa M, Pinto JG (2001) Three extreme storms over Europe in December 1999. Weather 56:70–80

    Google Scholar 

  • Unanwa C, McDonald J, Metha K, Smith D (2000) The development of wind damage bands for buildings. J Wind Eng Ind Aerod 84:119–149

    Article  Google Scholar 

  • Varnes D (1984) Landslide hazard zonation: a review of principles and practice. UNESCO, Paris

    Google Scholar 

  • WBGU German Advisory Council on Global Change (2000) World in transition: strategies for managing global environmental risks. Flagship report 1998. Springer, Berlin

    Google Scholar 

  • Weichhart P (2007) Risiko—Vorschläge zum Umgang mit einem schillernden Begriff. Berichte zur deutschen Landeskunde 81(3):201–214

    Google Scholar 

  • Weichselgartner J (2001) Disaster mitigation: the concept of vulnerability revisited. Disaster Prevent Manage 10:85–94

    Article  Google Scholar 

  • Weichselgartner J (2002) Naturgefahren als soziale Konstruktion. Eine geographische Betrachtung der gesellschaftlichen Auseinandersetzung mit Naturrisiken. Skaker, Aachen

    Google Scholar 

  • Wieringa J, Davenport AG, Grimmond CSB, Oke TR (2001) New revision of davenport roughness classification. Proceedings of the 3rd European & African conference on wind engineering, Eindhoven, July 2001. Available via http://www.kcl.ac.uk/ip/suegrimmond/publishedpapers/DavenportRoughness2.pdf. Accessed 18 Aug 2008

  • Wisner B (2004) Assessment of capability and vulnerability. In: Bankoff G, Frerks G, Hilhorst D (eds) Mapping vulnerability: disasters, development and people. Earthscan, London, pp 183–193

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Huttenlau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huttenlau, M., Stötter, J. The structural vulnerability in the framework of natural hazard risk analyses and the exemplary application for storm loss modelling in Tyrol (Austria). Nat Hazards 58, 705–729 (2011). https://doi.org/10.1007/s11069-011-9768-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-011-9768-x

Keywords

Navigation