Skip to main content
Log in

Trimlines as evidence for palaeo-tsunamis

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

As seen in many of the satellite images from the tsunami in the Indian Ocean which struck in 2004, there is a distinctive limit between an area with sand coverage, vegetation destruction, and soil erosion on the one hand, and the unaffected natural vegetation on the other. This distinction provides a good landmark to map the inundation width, delimited on the landward side by a trimline. In this study, older trimlines, dating back about 300 years, from tsunamis that occurred throughout the world were documented. We discuss the origin and chronology of trimline modification and extinction, both of which depend on local topography, rock type, and climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Baptista MA, Miranda PMA, Miranda JM, Mendes Victor L (1999) Constraints on the source of the 1755 Lisbon tsunami inferred from numerical modelling of historical data on the source of the 1755 Lisbon earthquake. J Geodynamics 25(2):159–174

    Article  Google Scholar 

  • Bartel P, Kelletat D (2003) Erster Nachweis holozäner Tsunamis im westlichen Mittelmeergebiet (Mallorca, Spanien) mit einem Vergleich von Tsunami- und Sturmwellenwirkung auf Festgesteinsküsten. Berichte Forschungs- und Technologiezentrum Westküste der Universität Kiel (Büsum) 28:93–107

    Google Scholar 

  • Benner R, Browne T, Brückner H, Kelletat D, Scheffers A (2010) Boulder transport by waves: progress in physical modelling. Z Geomorph 54(Suppl. 3):127–146

    Article  Google Scholar 

  • Borrero JC (2005a) Field data and satellite imagery of tsunami effects in Banda Aceh. Science 308:1596

    Article  Google Scholar 

  • Borrero JC (2005b) Field Survey of northern Sumatra and Banda Aceh, Indonesia and after the tsunami and earthquake of 26 December 2004. Seismol Res Lett 76(3):309–317

    Article  Google Scholar 

  • Chandrasekar N, Immanuel JL, Sahayam JD, Rajamanickam M, Saravanan S (2007) Appraisal of tsunami inundation and run-up along the coast of Kanyakumari District, India—GIS analysis. Oceanologia 49(3):397–412

    Google Scholar 

  • Cho Y-S, Lakshumanan C, Choi B-H, Ha T-M (2008) Observations of run-up and inundation levels from the Teletsunami in the Andaman and Nicobar Islands: a field report. J Coast Res 24(1):216–223

    Article  Google Scholar 

  • Cho Y-S, Lakshumanan C, Choi B-H, Lee SO, Hwang KN (2009) A field report on the impact of the 2004 Sumatra Tsunami along the southeast coast of India. Coastal Eng J 51(1):1–26

    Article  Google Scholar 

  • Choowong M, Murakoshi N, Hisada K, Charusiri P, Doarerk V, Charoentitirat T, Chutakositkanon V, Jankaew K, Kanjanapayont P (2007) Erosion and deposition by the 2004 Indian Ocean tsunami in Phuket and Phang-nga Provinces, Thailand. J Coast Res 23(5):1270–1276

    Article  Google Scholar 

  • Choowong M, Phantuwongraj S, Charoentitirat T, Chutakositkanon V, Yumuang S, Charusiri P (2009) Beach recovery after 2004 Indian Ocean tsunami from Phang-nga, Thailand. Geomorphology 104(3):134–142

    Article  Google Scholar 

  • Dawson AG (1996) The geological significance of tsunamis. Z Geomorph NF Suppl Bd 102:199–210

    Google Scholar 

  • Dawson AG, Shi S (2000) Tsunami deposits. Pure Appl Geophys 157:875–897

    Article  Google Scholar 

  • Fritz HM, Hager WH, Minor H-E (2001) Lituya bay case: rockslide impact and wave runup. Sci Tsunami Hazards 19(1):3–22

    Google Scholar 

  • Fritz HM, Kalligeris N, Borrero JC, Broncano P, Ortega E (2008) The 15 August 2007 Peru tsunami runup observations and modeling. Geophys Res Lett 35(1):L10604

    Article  Google Scholar 

  • Frohlich C, Hornbach MJ, Taylor FW, Shen CC, Moala A, Morton AE, Kruger J (2009) Huge erratic boulders in Tonga deposited by a prehistoric tsunami. Geology 37(2):131–134

    Article  Google Scholar 

  • Goto K, Chavanich SA, Imamura F, Kunthasap P, Matsui T, Minoura K, Sugawara D, Yanagisawa H (2007) Distribution, origin and transport process of boulders deposited by the 2004 Indian Ocean tsunami at Pakarang Cape, Thailand. Sed Geol 202:821–837

    Article  Google Scholar 

  • Gracia FJ, Alonso C, Benavente J, Anfuso G, Del-Rio L (2006) The different coastal records of the 1755 tsunami waves along the south Atlantic Spanish Coast. Z Geomorph NF 146:195–220

    Google Scholar 

  • Hindson RA, Andrade C (1999) Sedimentation and hydrodynamic processes associated with the tsunami generated by the 1755 Lisbon earthquake. Quat Int 56:27–38

    Article  Google Scholar 

  • Hori K, Kuzumoto R, Hirouchi D, Umitsu M, Janjirawattikul N, Patanakoanog B (2007) Horizontal and vertical variation of 2004 Indian Ocean tsunami deposits: an example of two transects from the western coast of Thailand. Mar Geol 239:163–172

    Article  Google Scholar 

  • Imamura F, Goto K, Ohkubo S (2008) A numerical model for the transport of a boulder by tsunami. J Geophys Res 113:C01008. doi:10.1029/2007JC004170

    Article  Google Scholar 

  • Jayakumar S, Ilangovan D, Naik KA, Gowthaman R, Tirodkar G, Naik GN, Ganeshan P, Mani Murali R, Michael GS, Ramana MV, Bhattacharya GC (2005) Run-up and inundation limits along southeast coast of India during the 26 December 2004 Indian Ocean tsunami. Current Science 88:1741

    Google Scholar 

  • Kelletat D (2005) Neue Beobachtungen zu Paläo-Tsunami im Mittelmeergebiet: Mallorca und Bucht von Alanya, türkische Südküste. AMK 05, Schriften des Arbeitskreises Landes und Volkskunde (ALV), Koblenz: 1–14

  • Kelletat D (2007) Comments to Dawson, A.G. and Stewart, I. (2007). Tsunami deposits in the geological record. Sed Geol 211:87–91

    Article  Google Scholar 

  • Kelletat D, Schellmann G (2001) Sedimentologische und geomorphologische Belege starker Tsunami-Ereignisse jung-historischer Zeitstellung im Westen und Südosten Zyperns. Essener Geographische Arbeiten 32:1–74

    Google Scholar 

  • Kelletat D, Schellmann G (2002) Tsunamis on Cyprus—field evidences and 14C dating results. Z Geomorph NF 46(1):19–34

    Google Scholar 

  • Kelletat D, Whelan F, Bartel P, Scheffers A (2005a) New Tsunami Evidences in Southern Spain–Cabo de Trafalgar and Mallorca Island. In: Sanjaume E, Matheu JF (eds) Geomorfologia Litoral I Quarternari, Homenatge al Professor Vincenç M. Rosselló I Verger. Universitat de València, Spain, pp 215–222

    Google Scholar 

  • Kelletat D, Scheffers A, Scheffers S (2005b) Holocene tsunami deposits on the Bahaman Islands of Long Island and Eleuthera. Z Geomorph 48(4):519–540

    Google Scholar 

  • Kelletat D, Scheffers A, Scheffers S (2007) Field signatures of the SE-Asian mega-tsunami along the west coast of Thailand compared to Holocene Paleo-Tsunami from the Atlantic region. Pure Appl Geophys 164(2/3):413–431

    Article  Google Scholar 

  • Kumar CS, Murugan PA, Krishnamurthy RR, Batvari BPD, Ramanamurthy MV, Usha T, Pari Y (2008) Inundation mapping—a study based on December 2004 Tsunami Hazard along Chennai coast, Southeast India. Nat Hazards Earth Syst Sci 8(4):617–626

    Article  Google Scholar 

  • Lavigne F, Paris R, Wassmer P, Gomez C, Brunstein D, Grancher D, Vautier F, Sartohadi J, Setiawan A, Syahnan TG, Fachrizal BW, Mardiatno D, Widagdo A, Cahyadi R, Lespinasse N, Mahieu L (2006) Learning from a major disaster (Banda Aceh, December 26th, 2009): a methodology to calibrate simulation codes for tsunami inundation models. Z Geomorph NF Suppl 146:253–265

    Google Scholar 

  • Mader CL (1999) Modeling the 1958 Lituya Bay mega-tsunami. Sci Tsunami Hazards 17:57–67

    Google Scholar 

  • Maouche S, Morhange C, Meghraoui M (2009) Large boulder accumulations on the Algerian coast evidence tsunami events in the western Mediterranean. Mar Geol 262:96–104

    Article  Google Scholar 

  • Mastronuzzi G, Pignatelli C, Sansó P (2006) Boulder fields: a valuable morphological indicator of paleotsunami in the Mediterranean Sea. Z Geomorph NF Suppl Bd 146:173–194

    Google Scholar 

  • Mhammdi N, Medina F, Kelletat D, Amahmou M, Aloussi L (2008) Large boulders along the Rabat coast (Morocco); possible emplacement by the November, 1st, 1755 A.D. Tsunami. Sci Tsunami Hazards 27(1):1–30

    Google Scholar 

  • Miller DJ (1960) Giant Waves in Lituya Bay, Alaska. Geol. Survey Professional Paper 354-C. U.S, Government Printing Office, Washington

    Google Scholar 

  • Narayan JP, Sharma ML, Maheshwar BK (2005) Run-up and inundation pattern developed during the Indian Ocean tsunami of December 26, 2004 along the coast of Tamilnadu (India). Gondwana Res 8(4):611–614

    Article  Google Scholar 

  • Pararas-Carayannis G (1999) Analysis of mechanisms of tsunami generation in Lituya Bay. Sci Tsunami Hazards 17:193–206

    Google Scholar 

  • Paris R, Wassmer P, Sartohadi J, Lavigne F, Barthomeuf B, Desgages E, Grancher D, Baumert P, Vaultier F, Brunstein D, Gomez C (2009) Tsunamis as geomorphic crisis: lessons from the December 26, 2004 tsunami in Lhok Nga, west Banda Aceh (Sumatra, Indonesia). Geomorphology 104(1–2):59–72

    Article  Google Scholar 

  • Peterson CD, Cruikshank KM, Jol HM, Schlichting RB (2008) Minimum runup heights of paleotsunami from evidence of sand ridge overtopping at Cannon Beach, Oregon, central Cascadia Margin, USA. J Sed Res 78(5–6):390–409

    Article  Google Scholar 

  • Pignatelli C, Scheffers A, Scheffers S, Mastronuzzi G (2010) Evaluation of tsunami flooding from geomorphological evidence in Bonaire (Netherland Antilles). Ann Geomorphol 54(3):219–249

    Article  Google Scholar 

  • Satake K (ed) (2006) Tsunamis: case studies and recent developments. Adv Nat Technol Hazards Res 23:1–30

    Google Scholar 

  • Scheffers A (2006) Sedimentary impacts of holocene tsunami events from the intra Americas seas and Southern Europe—a review. Z Geomorph NF Suppl Bd 146:7–37

    Google Scholar 

  • Scheffers A (2008) Tsunami boulder deposits. In: Shiki T, Tsuji Y, Yamazaki T, Minoura K (eds) Tsunamiites. Feature and Implications. Elsevier, Amsterdam, pp 299–318

    Google Scholar 

  • Scheffers A, Kelletat D (2003) Sedimentologic and geomorphologic tsunami imprints worldwide—a review. Earth Sci Rev 63(1):83–92

    Article  Google Scholar 

  • Scheffers A, Kelletat D (2005) Tsunami relics in the coastal landscape west of Lisbon, Portugal. Sci Tsunami Hazards 23(1):3–16

    Google Scholar 

  • Scheffers SR, Haviser J, Browne T, Scheffers A (2009) Tsunamis, hurricanes, the demise of coral reefs and shifts in prehistoric human populations in the Caribbean. Quat Intern 195(1–2):69–87

    Article  Google Scholar 

  • Shiki T, Tsuji Y, Yamazaki T, Minoura K (eds) (2008) Tsunamiites, Features and Implications. Elsevier, Amsterdam

    Google Scholar 

  • Singh RP (ed) (2007) Special issue on satellite observations related to sumatra tsunami and earthquake of 26 December 2004. Int J Remote Sens 28:13–14

    Google Scholar 

  • Tappin D (2007) Special issue on sedimentary features of tsunami deposits. Sed Geol 200:3–4

    Article  Google Scholar 

  • Whelan F, Kelletat D (2002) Geomorphic evidence and relative and absolute dating results for tsunami events on Cyprus. Sci Tsunami Hazards 20(1):3–18

    Google Scholar 

  • Whelan F, Kelletat D (2003) Analysis of tsunami deposits at Cabo de Trafalgar, Spain, using GIS and GPS technology. Essener Geographische Arbeiten 35:11–25

    Google Scholar 

  • Whelan F, Kelletat D (2005) Boulder deposits on the Southern Spanish Atlantic Coast: possible evidence for the 1755 AD Lisbon Tsunami. Sci Tsunami Hazards 23(3):25–38

    Google Scholar 

  • Wijetunge JJ (2006) Tsunami on 26 December 2004: Spatial distribution of tsunami height and the extent of inundation in Sri Lanka. Sci Tsunami Hazards 24(3):225–239

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Scheffers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheffers, A., Scheffers, S. & Squire, P. Trimlines as evidence for palaeo-tsunamis. Nat Hazards 63, 165–179 (2012). https://doi.org/10.1007/s11069-010-9691-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-010-9691-6

Keywords

Navigation