Skip to main content

Advertisement

Log in

Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy)

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This work summarizes the results of a geomorphological and bivariate statistical approach to gully erosion susceptibility mapping in the Turbolo stream catchment (northern Calabria, Italy). An inventory map of gully erosion landforms of the area has been obtained by detailed field survey and air photograph interpretation. Lithology, land use, slope, aspect, plan curvature, stream power index, topographical wetness index and length-slope factor were assumed as gully erosion predisposing factors. In order to estimate and validate gully erosion susceptibility, the mapped gully areas were divided in two groups using a random partitions strategy. One group (training set) was used to prepare the susceptibility map, using a bivariate statistical analysis (Information Value method) in GIS environment, while the second group (validation set) to validate the susceptibility map, using the success and prediction rate curves. The validation results showed satisfactory agreement between the susceptibility map and the existing data on gully areas locations; therefore, over 88% of the gullies of the validation set are correctly classified falling in high and very high susceptibility areas. The susceptibility map, produced using a methodology that is easy to apply and to update, represents a useful tool for sustainable planning, conservation and protection of land from gully processes. Therefore, this methodology can be used to assess gully erosion susceptibility in other areas of Calabria, as well as in other regions, especially in the Mediterranean area, that have similar morphoclimatic features and sensitivity to concentrated erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander DE (1980) Calanchi-accelerated erosion in Italy. Geography 65:95–100

    Google Scholar 

  • Amodio-Morelli L, Bonardi G, Colonna V, Dietrich D, Giunta G, Ippolito F, Liguori V, Lorenzoni S, Paglionico A, Perrone V, Piccarreta G, Russo M, Scandone P, Zanettin Lorenzoni E, Zuppetta A (1976) L’arco Calabro- Peloritano nell’orogene appenninico-maghrebide. Memorie della Società Geologica Italiana 17:1–60

    Google Scholar 

  • Anabalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32:269–277

    Article  Google Scholar 

  • ARSSA (2003) Carta dei suoli della regione Calabria—scala 1:250000. Monografia divulgativa. ARSSA-Agenzia Regionale per lo Sviluppo e per i Servizi in Agricoltura, Servizio Agropedologia. Rubbettino pp 387

  • ARSSA (2005) Carta del rischio di erosione attuale e potenziale della regione Calabria—scala 1:250000, Monografia divulgativa, ARSSA-Agenzia Regionale per lo Sviluppo e per i Servizi in Agricoltura, Servizio Agropedologia, Cerbone, Napoli 2005

  • Billi P, Dramis F (2003) Geomorphological investigation on gully erosion in the Rift Valley and the northern highlands of Ethiopia. Catena 50:353–368

    Article  Google Scholar 

  • Bull J, Kirkby MJ (2002) Channel heads and channel extension. In: Bull LJ, Kirkby MJ (eds) Dryland Rivers: hydrology and geomorphology of semi-arid channels. Wiley, Chichester, pp 263–298

    Google Scholar 

  • Caloiero D, Mercuri T, Reali C (1990) Le precipitazioni in Calabria (1921–1980). Geodata 36 CNR IRPI, Cosenza

    Google Scholar 

  • Carobene L, Mengani ME, Oliverio M (1989) Superfici terrazzate pleistoceniche nella media valle del fiume Crati (Calabria). Il Quaternario 2:15–39

    Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Proc Land 16:427–445

    Article  Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, Dordrecht, pp 135–175

    Google Scholar 

  • Çevik E, Topal T (2003) GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ Geol 44:949–962

    Article  Google Scholar 

  • Chung CF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472

    Article  Google Scholar 

  • Colella A, De Boer PL, Nio SD (1987) Sedimentology of a marine intermontane Pleistocene Gilbert-type fan-delta complex in the Crati Basin, Calabria, southern Italy. Sedimentology 34:721–736. doi:10.1111/j.1365-3091.1987.tb00798.x

    Article  Google Scholar 

  • Collison AJC (2001) The cycle of instability: stress release and fissure flow as controls on gully head retreat. Hydrol Process 15:3–12

    Article  Google Scholar 

  • Conforti M (2008) Studio geomorfopedologico dei processi erosivi nel bacino del T. Turbolo (Calabria settentrionale) con il contributo della spettrometria della riflettenza. PhD thesis, University of Calabria, pp 310

  • Conoscenti C, Di Maggio C, Rotigliano E (2008) Soil erosion susceptibility assessment and validation using a geostatistical multivariate approach: a test in Southern Sicily. Nat Hazards 46:287–305

    Article  Google Scholar 

  • Dai FC, Lee CF, Li J, Xu ZW (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol 40:381–391

    Article  Google Scholar 

  • Dramis F, Gentili B (1977) Contributo allo studio delle acclività dei versanti nell’Appennino Umbro. Marchigiano. Stud Geol Camerti 3:153–164

    Google Scholar 

  • Federici PR, Puccinelli A, Cantarelli E, Casarosa N, D’Amato Avanzi G, Falaschi F, Giannecchini R, Pochini A, Ribolini A, Bottai M, Salvati N, Testi C (2007) Multidisciplinary investigations in evaluating landslide susceptibility—an example in the Serchio River valley (Italy). Quat Int 171–172:52–63

    Article  Google Scholar 

  • Gattinoni P (2008) Parametrical landslide modeling for the hydrogeological susceptibility assessment: from the Crati Valley to the Cavallerizzo landslide (Southern Italy). Nat Hazards 50:161–178. doi:10.1007/s11069-008-9328-1

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Iovine G, Petrucci O, Rizzo V, Tansi C (2006) The March 7th 2005 Cavallerizzo (Cerzeto) landslide in Calabria—Southern Italy. Engineering geology for tomorrow’s cities—the 10th IAEG congress, Nottingham (UK), The Geological Society of London, Paper number 785

  • Jenks GF (1989) Geographic logic in line generalization. Cartographica 26(1):27–42

    Google Scholar 

  • Kakembo V, Xanga WW, Rowntree K (2009) Topographic thresholds in gully development on the hillslopes of communal areas in Ngqushwa Local Municipality, Eastern Cape, South Africa. Geomorphology 110:188–195

    Article  Google Scholar 

  • Köppen W (1936) Das geographische System der Klimate. In: Köppen W, Geiger R, Teil C (eds) Handbuch der Klimatologie. Band 5. Gebrüder Bornträger, Berlin, pp 1–46

    Google Scholar 

  • Lanzafame G, Zuffa G (1976) Geologia e petrografia del foglio Bisignano (Bacino del Crati, Calabria). Geologica Romana 15:223–270

    Google Scholar 

  • Lee S (2004) Soil erosion assessment and its verification using the Universal Soil Loss Equation and geographic information system: a case study at Boun, Korea. Environ Geol 45:457–465

    Article  Google Scholar 

  • Magliulo P, Di Lisio A, Russo F, Zelano A (2008) Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy. Nat Hazards 47:411–435

    Article  Google Scholar 

  • Maharaj R (1993) Landslide processes and landslide susceptibility analysis from an upland watershed: a case study from St Andrew, Jamaica, West Indies. Eng Geol 34:53–79

    Article  Google Scholar 

  • Martínez-Casasnovas JA, Antón-Fernández C, Ramos MC (2003) Sediment production in large gullies of the Mediterranean area (NE Spain) from high-resolution digital elevation models and geographical information systems analysis. Earth Surf Process Landf 28:443–456. doi:10.1002/esp.451

    Article  Google Scholar 

  • Moore ID, Burch GJ (1986) Physical basis of the length-slope factor in the universal soil loss equation. Soil Sci Soc Am J 50:1294–1298

    Article  Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5:3–30

    Article  Google Scholar 

  • Moretti S, Rodolfi G (2000) A typical “calanchi” landscape on the Eastern Apennine margin (Atri, Central Italy): geomorphological features and evolution. Catena 40:217–228

    Article  Google Scholar 

  • Morgan RPC (2005) Soil Erosion and Conservation, 3rd edn. Wiley, New York

    Google Scholar 

  • Nagarajan R, Roy A, Vinod Kumar R, Mukherjee A, Khire MV (2000) Landslide hazard suspectibility mapping based on terrain and climatic factors for tropical monsoon regions. Bull Eng Geol Env 58:275–287

    Article  Google Scholar 

  • Ndomba Pm, Mtalo F, Killingtveit A (2009) Estimating gully erosion contribution to large catchment yield rate in Tanzania. Phys Chem Earth 34:741–748

    Google Scholar 

  • Nefeslioglu HA, Duman TY, Durmaz S (2008) Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology 94:401–418

    Article  Google Scholar 

  • Poesen J, Vandaele K, Van Wesemael B (1998) Gully erosion: importance and model implications. In: Boardman J, Favis-Mortlock D (eds) Modelling soil erosion by water, vol I 55. NATO ASI Series, Springer, Berlin Heidelberg, pp 285–311

    Google Scholar 

  • Poesen J, Vandekerckhove L, Nachtergaele J, Oostwoud Wijdenes D, Verstraeten G, Van Wesemael B (2002) Gully erosion in dryland environments. In: Bull LJ, Kirkby MJ (eds) Dryland Rivers: hydrology and geomorphology of semi-arid channels. Wiley, Chichester, pp 229–262

    Google Scholar 

  • Pulice I, Scarciglia F, Leonardi L, Robustelli G, Conforti M, Cuscino M, Lupiano V, Critelli S (2009) Studio multidisciplinare di forme e processi denudazionali nell’area di Vrica (Calabria orientale). Bollettino della Società Geografica Italiana 87(I–II):399–414

    Google Scholar 

  • Rautela P, Lakhera RC (2000) Landslide risk analysis between Giri and Ton Rivers in Himalaya (India). Int J Appl Earth Obs Geoinf 2:153–160

    Article  Google Scholar 

  • Remondo J, Gonzalez A, Teran J, Cendrero A, Fabbri A, Chung C (2003) Validation of landslide susceptibility maps; examples and applications from a case study in Northern Spain. Nat Hazards 30:437–449

    Article  Google Scholar 

  • Renard KG, Foster GR, Weesies GA, Mccool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the revised soil loss equation (RUSLE). US Dept. of Agriculture. Agric. Handbook No. 703, pp 404

  • Sorriso-Valvo M, Tansi C (1996) Relazioni tra frane, forme del rilievo e strutture tettoniche nella media Valle del Fiume Crati (Calabria). Geografia Fisica e Dinamica Quaternaria 19:107–117

    Google Scholar 

  • Sorriso-Valvo M, Bryan RB, Yair A, Iovino F, Antronico L (1995) Impact of afforestation on hydrological response and sediment production in a small Calabrian catchment. Catena 25:89–104

    Article  Google Scholar 

  • Sùzen ML, Doyuran V (2003) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45:665–679

    Article  Google Scholar 

  • Terranova O, Antronico L, Coscarelli R, Iaquinta P (2009) Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: an application model for Calabria (southern Italy). Geomorphology 112:228–245

    Article  Google Scholar 

  • Tortorici L, Monaco C, Tansi C, Cocina O (1995) Recent and active tectonics in the Calabrian Arc (south Italy). Tectonophysics 243:37–55

    Article  Google Scholar 

  • USDA (2006) Keys to soil taxonomy, USDA (United States Department of Agriculture), Soil Survey Staff, 10th edit. Natural Resources Conservation Service, Washington DC, pp 333

  • Valentin C, Poesen J, Li Y (2005) Gully erosion: impacts, factors and control. Catena 63:132–153. doi:10.1016/j.catena.2005.06.001

    Article  Google Scholar 

  • Van Westen CJ (1993) Application of geographic information systems to landslide hazard zonation. ITC publ. no. 15, Int. Ins. for Aerospace and Earth Res. Surv, Enschede, The Netherlands, p 245

    Google Scholar 

  • Van Westen CJ (1997) Statistical landslide hazard analysis. ILWIS 2.1 for Windows application guide. ITC publication, Enschede, pp 73–84

    Google Scholar 

  • Vandekerckhove L, Poesen J, Oostwoudwijdenes DJ, Gyssels G, Beuselinck L, De Luna E (2000) Characteristics and controlling factors of bank gullies in two semi.arid Mediterranean environments. Geomorphology 33:37–58

    Article  Google Scholar 

  • Vanwalleghem T, Poesen J, Nachtergaele J, Verstraeten G (2005) Characteristics, controlling factors and importance of deep gullies under cropland on loess.derived soils. Geomorphology 69:76–91

    Article  Google Scholar 

  • Wang HB, Sassa K (2005) Comparative evaluation of landslide susceptibility in Minamata area, Japan. Environ Geol 47:956–966

    Article  Google Scholar 

  • Wilson JP, Gallant JC (2000) Terrain analysis principles and applications. Wiley, Toronto Canada, p 479

    Google Scholar 

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparison of results and confirmations. Catena 2:1–12

    Article  Google Scholar 

  • Yin KJ, Yan TZ (1988) Statistical prediction model for slope instability of metamorphosed rocks. In: Proceedings of the 5th international symposium on landslides, Lausanne, Switzerland, vol 2, pp 1269–1272

  • Zezere JL, Reis E, Garcia R, Oliveira S, Rodrigues ML, Vieira G, Ferreira AB (2004) Integration of spatial and temporal data for the definition of different landslide hazard scenarios in the area north of Lisbon (Portugal). Nat Haz Earth Sys Sci 4:133–146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Conforti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conforti, M., Aucelli, P.P.C., Robustelli, G. et al. Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Nat Hazards 56, 881–898 (2011). https://doi.org/10.1007/s11069-010-9598-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-010-9598-2

Keywords

Navigation