Skip to main content

Advertisement

Log in

Micro-scale flood risk analysis based on detailed 2D hydraulic modelling and high resolution geographic data

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The paper presents a consistent micro-scale flood risk analysis procedure, relying on detailed 2D inundation modelling as well as on high resolution topographic and land use database. The flow model is based on the shallow-water equations, solved by means of a finite volume scheme on multi-block structured grids. Using highly accurate laser altimetry, the simulations are performed with a typical grid spacing of 2 m, which is fine enough to represent the flow at the scale of individual buildings. Consequently, the outcomes of hydraulic modelling constitute suitable inputs for the subsequent exposure analysis, performed at a micro-scale using detailed land use maps and geographic database. Eventually, the procedure incorporates social flood impact analysis and evaluation of direct economic damage to residential buildings. Besides detailing the characteristics and performance of the hydraulic model, the paper describes the flow of data within the overall flood risk analysis procedure and demonstrates its applicability by means of a case study, for which two different flood protection measures were evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Apel H, Aronica G, Kreibich H, Thieken A (2007) Flood risk assessment strategies—a comparative study. Geophys Res Abstr 9:02916

    Google Scholar 

  • Apel H, Aronica G, Kreibich H, Thieken A (2009) Flood risk analyses—how detailed do we need to be? Nat Hazards 49(1):79–98

    Article  Google Scholar 

  • Bates PD, de Roo APJ (2000) A simple raster-based model for flood inundation simulation. J Hydrol 236:54–77

    Article  Google Scholar 

  • Begnudelli L, Sanders BF, Bradford SF (2008) Adaptive Godunov-Based model for flood simulation. J Hydraul Eng 134(6):714–725

    Article  Google Scholar 

  • Boquet A (2009) Contributions à l’analyse du risque d’inondation : probabilité de rupture de barrage et enquête de validation de dommages, University of Liège, 74

  • Bradbrook K, Waller S, Morris D (2005) National floodplain mapping: datasets and methods—160,000 km in 12 months. Nat Hazards 36(1):103–123

    Article  Google Scholar 

  • Brouwer R, Akter S, Brander L, Haque E (2007) Socioeconomic vulnerability and adaptation to environmental risk: a case study of climate change and flooding in Bangladesh. Risk Anal 27(2):313–326

    Article  Google Scholar 

  • Caleffi V, Valiani A, Zanni A (2003) Finite volume method for simulating extreme flood events in natural channels. J Hydraul Eng-ASCE 41(2):167–177

    Google Scholar 

  • Chaudhry MH (1993) Open-channel flow. Englewood Cliffs, Prentice Hall

    Google Scholar 

  • Coninx I (2008) Social flood risk assessment—methodological paper for the ADAPT project. Leuven, KUL, 25

  • Coninx I, Bachus K (2007) Integrating social vulnerability to floods in a climate change context. In: Proc. int. conf. on adaptive and integrated water management, coping with complexity and uncertainty, Basel, Switzerland

  • de Wit MJM, Peeters HA, Gastaud PH, Dewil P, Maeghe K, Baumgart J (2007) Floods in the Meuse basin: event descriptions and an international view on ongoing measures. Int J River Basin Manage 5(4):279–292

    Article  Google Scholar 

  • Dewals BJ, Erpicum S, Archambeau P, Detrembleur S, Pirotton M (2006a) Depth-integrated flow modelling taking into account bottom curvature. J Hydraul Res 44(6):787–795

    Article  Google Scholar 

  • Dewals BJ, Erpicum S, Archambeau P, Detrembleur S, Pirotton M (2006b) Numerical tools for dam break risk assessment: validation and application to a large complex of dams. In: Hewlett H (ed) Improvements in reservoir construction, operation and maintenance. Thomas Telford, London, pp 272–282

    Google Scholar 

  • Dewals BJ, Detrembleur S, Archambeau P, Erpicum S, Pirotton M (2008a) Detailed 2D hydrodynamic simulations as an onset for evaluating socio-economic impacts of floods considering climate change. In: Samuels P, Huntington S, Allsop W, Harrop J (eds) Flood risk management: research and practice. Taylor & Francis, London, pp 125–135

    Google Scholar 

  • Dewals BJ, Giron E, Ernst J, Hecq W, Pirotton M (2008b) Integrated assessment of flood protection measures in the context of climate change: hydraulic modelling and economic approach. In: K Aravossis, CA Brebbia, N Gomez (eds) Environmental economics. WIT press, Southampton, UK, p 10

  • Dewals BJ, Kantoush SA, Erpicum S, Pirotton M, Schleiss AJ (2008c) Experimental and numerical analysis of flow instabilities in rectangular shallow basins. Environ Fluid Mech 8:31–54

    Article  Google Scholar 

  • Dushmanta D, Srikantha H, Katumi M (2003) A mathematical model for flood loss estimation. J Hydrol 277:24–49

    Article  Google Scholar 

  • Ernst J, Dewals BJ, Detrembleur S, Archambeau P, Erpicum S, Pirotton M (2008a) Integration of accurate 2D inundation modelling, vector land use database and economic damage evaluation. In: Samuels P, Huntington S, Allsop W, Harrop J (eds) Flood risk management: research and practice. Taylor & Francis, London, pp 1643–1653

    Google Scholar 

  • Ernst J, Dewals BJ, Giron E, Hecq W, Pirotton M (2008b) Integrating hydraulic and economic analysis for selecting flood protection measures in the context of climate change. In: Proc. 4th int. symp. on flood defence, Toronto, Canada, Institute for Catastrophic Loss Reduction

  • Ernst J, Coninx I, Dewals BJ, Detrembleur S, Erpicum S, Bachus K, Pirotton M (2009a) Social flood impacts in urban areas: integration of detailed flow modelling and social analysis. In: Proc. 33rd IAHR congress—water engineering for a sustainable environment. Vancouver, British Columbia, IAHR

  • Ernst J, Coninx I, Dewals BJ, Detrembleur S, Erpicum S, Pirotton M, Bachus K (2009b) Planning flood risk reducing measures based on combined hydraulic simulations and socio-economic modelling at a micro-scale. In: Proc. European water resources association 7th int. conf.—water resources conservation and risk reduction under climatic instability, Limassol, Cyprus

  • Erpicum S, Archambeau P, Detrembleur S, Dewals B, Pirotton M (2007) A 2D finite volume multiblock flow solver applied to flood extension forecasting. In: García-Navarro P, Playán E (eds) Numerical modelling of hydrodynamics for water ressources. Taylor & Francis, Londres, pp 321–325

    Google Scholar 

  • Erpicum S, Dewals BJ, Archambeau P, Pirotton M (2009a) Dam-break flow computation based on an efficient flux-vector splitting. J. Comput Appl Math (in press). doi:10.1016/j.cam.2009.08.110

  • Erpicum S, Meile T, Dewals BJ, Pirotton M, Schleiss AJ (2009b) 2D numerical flow modeling in a macro-rough channel. Int J Numer Methods Fluids 61(11):1227–1246

    Article  Google Scholar 

  • Erpicum S, Dewals BJ, Archambeau P, Detrembleur S, Pirotton M (2010) Detailed inundation modeling using high resolution DEMs. Eng Appl Comput Fluid Mech 4(2):196–208

    Google Scholar 

  • FloodSite (2005) Language of risk 56

  • Giron E, Coninx I, Dewals BJ, El Kahloun M, De Smet L, Sacré D, Detrembleur S, Bachus K, Pirotton M, Meire P, De Sutter R, Hecq W (2009). Towards an integrated decision tool for adaptation measures—case study: floods. « ADAPT » Final Report Phase 1. Brussels, Belgian Science Policy, 122

  • Hervouet J-M (2003) Hydrodynamique des écoulements à surface libre—Modélisation numérique avec la méthode des éléments finis. Paris, Presses de l’école nationale des Ponts et Chaussées

  • ICPR (2001) Rhine atlas International Commission for the Protection of the Rhine

  • IPCC (2007) Climate change 2007: Synthesis Report—Summary for policymakers. Intergovernmental Panel on Climate Change

  • Kaplan S, Garrick BJ (1981) On the quantitative definition of risk. Risk Anal 1(1):11–27

    Article  Google Scholar 

  • Kreibich H, Müller M, Thieken AH, Merz B (2007) Flood precaution of companies and their ability to cope with the flood in August 2002 in Saxony, Germany. Water Resour Res 43(W03408). doi:10.1029/2005WR004691

  • McMillan HK, Brasington J (2007) Reduced complexity strategies for modelling urban floodplain inundation. Geomorphology 90(3–4):226–243

    Article  Google Scholar 

  • McMillan HK, Brasington J (2008) End-to-end risk assessment: a coupled model cascade with uncertainty estimation. Water Resour Res 44(W03419):14

    Google Scholar 

  • Merz B, Kreibich H, Thieken A, Schmidtke R (2004) Estimation uncertainty of direct monetary flood damage to buildings. Nat Hazards Earth Syst Sci 4(1):153–163

    Article  Google Scholar 

  • Mignot E, Paquier A, Haider S (2006) Modeling floods in a dense urban area using 2D shallow water equations. J Hydrol 327(1–2):186–199

    Article  Google Scholar 

  • Penning-Rowsell EC, Johnson C, Tunstall SM, Tapsell SM, Morris J, Chatterton JB, Coker A, Green C (2003) The benefits of flood and coastal defence: techniques and data for 2003. Flood Hazard Research Centre, Middlesex University

    Google Scholar 

  • Roger S, Dewals BJ, Erpicum S, Pirotton M, Schwanenberg D, Schüttrumpf H, Köngeter J (2009) Experimental und numerical investigations of dike-break induced flows. J Hydraul Res 47(3):349–359

    Article  Google Scholar 

  • Smith DI (1994) Flood damage estimation—a review of urban stage damage curves and loss function. Water SA 20(3):231–238

    Google Scholar 

  • Thieken AH, Müller M, Kreibich H, Merz B (2005) Flood damage and influencing factors: new insights from the August 2002 flood in Germany. Water Resour Res 41(W12430). doi:10.1029/2005WR004177

  • Thieken AH, Ackermann V, Elmer F, Kreibich H, Kuhlmann B, Kunert U, Maiwald H, Merz B, Müller M, Piroth K, Schwarz J, Schwarze R, Seifert I, Seifert J (2008) Methods for the evaluation of direct and indirect flood losses. In: Proc. 4th int. symp. on flood defence, Toronto, Canada, Institue for Catastrophic Loss Reduction

  • Van der Sande CJ, de Jong SM, de Roo APJ (2003) A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment. Int J Appl Earth Observ Geoinf 4:217–229

    Article  Google Scholar 

  • Wu W (2008) Computational river dynamics. Taylor & Francis, London

    Google Scholar 

Download references

Acknowledgment

Part of this research was carried out on behalf of the Belgian Science Policy (BELSPO), in the framework of the research program “Science for a Sustainable Development”. The authors also gratefully acknowledge the “Service Public de Wallonie” (SPW) for the Digital Surface Model and other data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. Dewals.

Additional information

J. Ernst, B. J. Dewals have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ernst, J., Dewals, B.J., Detrembleur, S. et al. Micro-scale flood risk analysis based on detailed 2D hydraulic modelling and high resolution geographic data. Nat Hazards 55, 181–209 (2010). https://doi.org/10.1007/s11069-010-9520-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-010-9520-y

Keywords

Navigation