Skip to main content
Log in

Automatic calibration tool for river models based on the MHYSER software

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Due to their complex nature, river models require extensive calibration in order to achieve reliable model predictions. Manually fitting the numerous parameters included in this procedure can be a laborious and repetitive process. This paper presents a new instrument, developed specifically for the automatic calibration of river models based on the software MHYSER. The instrument is completely autonomous and returns the model with the parameter values giving rise to the smallest difference between the model-generated observations and the measured observations. It utilises the software PEST to fit continuous calibration parameters and exceeds the program’s capabilities in order to also fit discontinuous calibration parameters. Testing of the instrument is accomplished using three models, one of which was developed during a study on the dynamics of sediments on the Romaine River, situated in the Eastern region of the Province of Quebec.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ackers P, White WR (1973) Sediment transport: new approach and analysis. J Hydraul Div ASCE HY11: 99

  • Ashida K, Michiue M (1972) Study on hydraulic resistance and bed-load transport rate in alluvial streams (In Japanese). Proc JSCE 206:59–69

    Google Scholar 

  • Bennett JP, Nordin CF (1977) Simulation of sediment transport and armouring. Hydrol Sci Bull XXII

  • Doherty J (2004) PEST model-independent parameter estimation user manual. Watermark numerical computing, 5th edn. 362 pp

  • DuBoys MP (1879) Le Rhône et les rivières à lit affouillable. Annals de Ponts et Chaussée 18(5):141–195

    Google Scholar 

  • Engelund F, Hansen E (1972) A monograph on sediment transport in alluvial streams. Teknish Forlag, Technical Press, Copenhagen

  • GENIVAR (2004) Rivière Romaine – Modélisation hydrodynamique 1D entre les PK 0 et 192. Rapport du Groupe conseil GENIVAR inc. à Hydro-Québec Production, Direction Aménagement de production, Hydraulique et Géotechnique, 95 p

  • GENIVAR (2006) Complexe de la rivière Romaine − Dynamique hydrosédimentaire des frayères à saumon atlantique. Rapport sectoriel. Pelletier, P., Levasseur, M., Bouazza, Z., Delage, P.-L. et Hamdi, S. GENIVAR Société en commandite pour Hydro-Québec Équipement, Unité Environnement. Version préliminaire

  • GENIVAR (2007) Complexe de la rivière Romaine − Dynamique hydrosédimentaire des frayères à saumon atlantique. Rapport sectoriel. Pelletier, P., Levasseur, M., Bouazza, Z., Delage, P.-L. et Hamdi, S. GENIVAR Société en commandite pour Hydro-Québec Équipement, Unité Environnement. 84 p, annexes

  • Laursen EM (1958) The total sediment load of streams. J Hydraul Div ASCE 84 (HY1)

  • Madden E (1993) Modified Laursen method for estimating bed-material sediment load. USACE-WES, contract report, HL-93-3

  • Mahdi T (2009) Semi-two-dimensional numerical model for river morphological change prediction: theory and concepts. J Nat Hazard 49(3):577–589

    Google Scholar 

  • Meyer-Peter E, Müller R (1948) Formula for bed-load transport. In: Proceedings of the international association for hydraulic research, 2nd meeting, Stockholm

  • Parker G (1990) Surface based bedload transport relationship for gravel rivers. J Hydraul Res 28(4):417–436

    Article  Google Scholar 

  • Toffaleti FB (1968) Definitive computations of sand discharge in rivers. J Hydraul Div ASCE 95(HY1)

  • Vidal J-P, Moisan S, Faure J-B, Dartus D (2007) River model calibration, from guidelines to operational support tools. Environ Model Softw 22(11):1628–1640

    Article  Google Scholar 

  • Yang CT (1973) Incipient motion and sediment transport. J Hydraul Div ASCE 99(HY10):1679–1704

    Google Scholar 

  • Yang CT (1979) Unit stream power equations for total load. J Hydrol 40

  • Yang CT (1984) Unit stream power equation for gravel. J Hydraul Div ASCE 110(HY12)

  • Yang CT (2003) Sediment transport—theory and practice, 2nd edn. Krieger, Malabar

    Google Scholar 

  • Yang CT, Simões FJM (2002) User’s Manual for GSTARS3 (Generalized Sediment Transport model for Alluvial River Simulation version 3.0). U.S. Department of the Interior, Bureau of Reclamation Technical Service Center, 310 pp

  • Yang CT, Molinas A, Wu B. (1996) Sediment transport in the Yellow River. J Hydraul Eng ASCE 122(5)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tew-Fik Mahdi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKibbon, J., Mahdi, TF. Automatic calibration tool for river models based on the MHYSER software. Nat Hazards 54, 879–899 (2010). https://doi.org/10.1007/s11069-010-9512-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-010-9512-y

Keywords

Navigation