Skip to main content

Coastal flooding: impacts of coupled wave–surge–tide models

Abstract

Wind waves and elevated water levels together can cause flooding in low-lying coastal areas, where the water level may be a combination of mean sea level, tides and surges generated by storm events. In areas with a wide continental shelf a travelling external surge may combine with the locally generated surge and waves and there can be significant interaction between the propagation of the tide and surge. Wave height at the coast is controlled largely by water depth. So the effect of tides and surges on waves must also be considered, while waves contribute to the total water level by means of wave setup through radiation stress. These processes are well understood and accurately predicted by models, assuming good bathymetry and wind forcing is available. Other interactions between surges and waves include the processes of surface wind-stress and bottom friction as well as depth and current refraction of waves by surge water levels and currents, and some of the details of these processes are still not well understood. The recent coastal flooding in Myanmar (May 2008) in the Irrawaddy River Delta is an example of the severity of such events, with a surge of over 3 m exacerbated by heavy precipitation. Here, we review the existing capability for combined modelling of tides, surges and waves, their interactions and the development of coupled models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abe K (1979) Size of great earthquakes of 1837–1974 inferred from tsunami data. J Geophys Res 84:1561–1568. doi:10.1029/JB084iB04p01561

    Article  Google Scholar 

  2. Alexandersson H, Schmith T, Iden K, Tuomenvirta H (1998) Long-term variations of the storm climate over NW Europe. Glob At Ocean Syst 6:97–120

    Google Scholar 

  3. Alexandersson H, Tuomenvirta H, Schmith T, Iden K (2000) Trends of storms in NW Europe derived from an updated pressure data set. Clim Res 14:71–73. doi:10.3354/cr014071

    Article  Google Scholar 

  4. Ardhuin F, Rascle N, Belibassakis KA (2008) Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Model 20(1):35–60. doi:10.1016/j.ocemod.2007.07.001

    Article  Google Scholar 

  5. Bargagli A, Carillo A, Mariotti A, Pisacane G, Ruti PM, Struglia MV (2002) An integrated forecast system over the Mediterranean basin: extreme surge prediction in the northern Adriatic Sea. Mon Weather Rev 130:1317–1322. doi:10.1175/1520-0493(2002)130<1317:AIFSOT>2.0.CO;2

    Article  Google Scholar 

  6. Bidlot J-R, Li J-G, Wittmann P, Faucher M, Chen H, Lefèvre J-M, Bruns T, Greenslade D, Ardhuin F, Kohno N, Park S, Gomez M (2007) Inter-comparison of operational wave forecasting systems. In: Proceedings of 10th international workshop on wave hindcasting and forecasting and coastal hazard symposium, North Shore, Oahu, Hawaii, 11–16 November 2007. http://www.waveworkshop.org/10thWaves/ProgramFrameset.htm

  7. Bolaños R, Osuna P, Wolf J, Monbaliu J, Sanchez-Arcilla A (2007) The POLCOMS-WAM wave–current interaction model: development and performance in the NW Mediterranean, pp 685–691. In: Guedes-Soares C, Kolev P (eds) Maritime industry, ocean engineering and coastal resources: proceedings of the 12th international congress of the international maritime association of the Mediterranean, IMAM 2007, Varna, Bulgaria, 2–6 September 2007. Taylor Francis, London

  8. Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions, Part I. Model description and validation. J Geophys Res 104(C4):7649–7666. doi:10.1029/98JC02622

    Article  Google Scholar 

  9. Brown J, Wolf J (2008) Coupled wave and surge modelling for the eastern Irish Sea and implications for model wind-stress. Submitted to Continental Shelf Research (under revision)

  10. Burgers GJH, Flather RA, Janssen PAEM, Mastenbroek C, Wu X, Cavaleri L (1994) Combining waves and storm surge modelling. In: Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM (eds) Dynamics and modelling of ocean waves. Cambridge University Press, Cambridge, pp 371–374

    Google Scholar 

  11. Butler A, Heffernan JE, Tawn JA, Flather RA, Horsburgh KJ (2007) Extreme value analysis of decadal variations in storm surge elevations. J Mar Syst 67(1–2):189–200. doi:10.1016/j.jmarsys.2006.10.006

    Article  Google Scholar 

  12. Caires S, Swail V, Wang XL (2006) Projection and analysis of extreme wave climate. J Clim 19(21):5581–5605. doi:10.1175/JCLI3918.1

    Article  Google Scholar 

  13. Cavaleri L, Flather RA, Hasselmann S, Wu X (1994) Shoaling and depth refraction. In: Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM (eds) Dynamics and modelling of ocean waves. Cambridge University Press, Cambridge, pp 343–348

    Google Scholar 

  14. Charnock H (1955) Wind-stress on a water surface. Q J R Meteorol Soc 81(350):639–640. doi:10.1002/qj.49708135027

    Article  Google Scholar 

  15. Chawla A, Kirby JT (2002) Monochromatic and random wave breaking at blocking points. J Geophys Res 107:C7. doi:10.1029/2001JC001042

  16. Chen Q, Wang L, Zhao H, Douglass SL (2007) Prediction of storm surges and wind waves on coastal highways in hurricane-prone areas. J Coast Res 23(5):1304–1317. doi:10.2112/05-0465.1

    Article  Google Scholar 

  17. Choi BH, Eum HM, Woo SB (2003) A synchronously coupled tide–wave–surge model of the Yellow Sea. Coast Eng 47(4):381–398

    Article  Google Scholar 

  18. Davies AM, Lawrence J (1994) Examining the influence of wind and wind wave turbulence on tidal currents, using a three-dimensional hydrodynamic model including wave–current interaction. J Phys Oceanogr 24(12):2441–2460. doi:10.1175/1520-0485(1994)024<2441:ETIOWA>2.0.CO;2

    Article  Google Scholar 

  19. de Vries H (2008) Probability forecast for water levels at the coast of the Netherlands. ECMWF newsletter, 114, Winter 2007/08. www.ecmwf.int/publications/newsletter/index.html

  20. de Vries H, Breton M, de Mulder T, Krestenitis Y, Ozer J, Proctor R, Ruddick K, Salomon JC, Voorrips A (1995) A comparison of 2D storm surge models applied to three shallow European seas. Environ Softw 10(1):23–42. doi:10.1016/0266-9838(95)00003-4

    Article  Google Scholar 

  21. DHI (Danish Hydraulic Institute) (2002) MIKE 21 coastal hydraulics and oceanography, the hydrodynamics module reference manual. DHI Water and Environment, Horsholm, Denmark, 58 pp

    Google Scholar 

  22. Dixon MJ, Tawn JA (1995) Extreme sea levels at the UK A-class sites: optimal site-by-site analyses and spatial analyses for the east coast. POL Internal Document no. 72, 256 pp + Appendices

  23. Emanuel K, Sundararajan R, Williams J (2008) Hurricanes and global warming: results from downscaling IPCC AR4 simulations. Bull Am Meteorol Soc 89:347–367. doi:10.1175/BAMS-89-3-347

    Article  Google Scholar 

  24. Flather RA (1981) Practical surge predictions using numerical models. In: Peregrine DH (ed) Floods due to high winds and tides. Academic Press, London, pp 21–43

  25. Flather RA (2000) Existing operational oceanography. Coast Eng 41(1–3):13–40. doi:10.1016/S0378-3839(00)00025-9

    Article  Google Scholar 

  26. Flather RA, Williams JA (2004) Future development of operational storm surge and sea level prediction. Proudman Oceanographic Laboratory, Internal Document, No 165, 69 pp

  27. Gerritsen RA (2005) What happened in 1953? The big flood in the Netherlands in retrospect. Philos Trans R Soc Lond A 363:1271–1291. doi:10.1098/rsta.2005.1568

    Article  Google Scholar 

  28. Gill AE (1982) Atmosphere-ocean dynamics. Academic Press, London, 662 pp

    Google Scholar 

  29. Golding B (1983) A wave prediction system for real time sea state forecasting. Q J R Meteorol Soc 109:393–416. doi:10.1002/qj.49710946011

    Article  Google Scholar 

  30. Grant WD, Madsen OS (1979) Combined wave and current interaction with a rough bottom. J Geophys Res 84(C4):1797–1808. doi:10.1029/JC084iC04p01797

    Google Scholar 

  31. Hall JW, Sayers PB, Panzeri M, Deakin R (2007) Quantitative assessment of driver impacts on future flood risk in England and Wales, Chapter 13. In: Thorne CR, Evans EP, Penning-Rowsell EC (eds) Future flooding and coastal erosion risks. Thomas Telford, London, 514 pp

  32. Hawkes PJ, Gouldby BP, Tawn JA, Owen MW (2000) The joint probability of waves and water levels in coastal defence design. Special Maritime Issue, J Hydraulic Research, IAHR

  33. Heaps NS (1983) Storm surges, 1967–1982. Geophys J R Astron Soc 74:331–376

    Google Scholar 

  34. Hedges TS, Reis MT (1998) Random wave overtopping of simple seawalls: a new regression model. Water Marit Energy J 130(1):1–10

    Article  Google Scholar 

  35. Hinton C, Townend IH, Nicholls RJ (2007) Coastal processes, chapter 9. In: Thorne CR, Evans EP, Penning-Rowsell EC (eds) Future flooding and coastal erosion risks. Thomas Telford, London, 514 pp

  36. Holt MW (1994) Improvements to the UKMO wave model swell dissipation and performance in light winds. Forecasting research division technical report 119, October 1994. Unpublished report available from the Met Office

  37. Holt JT, James DJ (2001) An s coordinate density evolving model of the northwest European continental shelf: 1. Model description and density structure. J Geophys Res 106(C7):14015–14034. doi:10.1029/2000JC000304

    Article  Google Scholar 

  38. Horsburgh KJ, Wilson C (2007) Tide–surge interaction and its role in the distribution of surge residuals in the North Sea. J Geophys Res 112:C08003. doi:10.1029/2006JC004033

  39. Horsburgh KJ, Wilson C, Baptie BJ, Cooper A, Cresswell D, Musson RMW, Ottemöller L, Richardson S, Sargeant SL (2008) Impact of a Lisbon-type tsunami on the U.K. coastline and the implications for tsunami propagation over broad continental shelves. J Geophys Res 113:C04007. doi:10.1029/2007JC004425

  40. Hubbert KP, Wolf J (1991) Numerical investigation of depth and current refraction of waves. J Geophys Res 96(C2):2737–2748. doi:10.1029/90JC01866

    Article  Google Scholar 

  41. Janssen PAEM (1989) Wave-induced stress and the drag of air flow over sea waves. J Phys Oceanogr 19:745–754. doi:10.1175/1520-0485(1989)019<0745:WISATD>2.0.CO;2

    Article  Google Scholar 

  42. Janssen PAEM (1991) Quasi-linear theory of wind-wave generation applied to wave forecasting. J Phys Oceanogr 21:1631–1642. doi:10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2

    Article  Google Scholar 

  43. Janssen PAEM (2004) The interaction of ocean waves and wind. Cambridge University Press, Cambridge, 300 pp

    Book  Google Scholar 

  44. Janssen PAEM (2008) Progress in ocean wave forecasting. J Comput Phys 227:3572–3594. doi:10.1016/j.jcp.2007.04.029

    Article  Google Scholar 

  45. Jelesnianski C, Chen J, Shaffer W (1992) SLOSH: sea, lake, and overland surges from Hurricanes. NOAA technical report, NWS 48

  46. Jones JE, Davies AM (1998) Storm surge computations for the Irish Sea using a three-dimensional numerical model with wave–current interaction. Cont Shelf Res 18:201–251. doi:10.1016/S0278-4343(97)00062-9

    Article  Google Scholar 

  47. Jones JE, Davies AM (2005) An intercomparison between finite difference and finite element (TELEMAC) approaches to modelling west coast of Britain tides. Ocean Dyn 55(3–4):178–198. doi:10.1007/s10236-005-0006-5

    Article  Google Scholar 

  48. Jones JE, Davies AM (2008) Storm surge computations for the west coast of Britain using a finite element model (TELEMAC) (accepted for publication in Ocean Dyn)

  49. Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM (1994) Dynamics and modelling of ocean waves. Cambridge University Press, Cambridge, p 532

    Book  Google Scholar 

  50. Kumar VS, Babu VR, Babu MT, Dhinakaran G, Rajamanickam GV (2008) Assessment of storm surge disaster potential for the Andaman Islands. J Coast Res 24(2B):171–177. doi:10.2112/05-0506.1

    Article  Google Scholar 

  51. Lane A, Hu K, Hedges TS, Reis MT (2008) New north east of England tidal flood forecasting system to appear in proceedings of FLOODrisk 2008, Taylor and Francis, London

  52. Leake J, Wolf J, Lowe J, Stansby P, Jacoub G, Nicholls R, Mokrech M, Nicholson-Cole S, Walkden M, Watkinson A, Hanson S (2008) Predicted wave climate for the UK: towards an integrated model of coastal impacts of climate change. In: Proceedings of the ECSS conference 2007, ASCE, New York

  53. Lionello P, Zampato L, Malguzzi P, Tomasin A, Bergamasco A (1998) On the correct surface stress for the prediction of the wind wave field and the storm surge in the northern Adriatic Sea. Nuovo Cim 21C:515–531

    Google Scholar 

  54. Longuet-Higgins MS, Stewart RW (1962) Radiation stress and mass transport in gravity waves, with applications to “surf beats”. J Fluid Mech 13:481–504. doi:10.1017/S0022112062000877

    Article  Google Scholar 

  55. Lowe JA, Gregory JM (2005) The effects of climate change on storm surges around the United Kingdom. Philos Trans R Soc Ser A: Math Phys Sci 363:1313–1328. doi:10.1098/rsta.2005.1570

    Article  Google Scholar 

  56. Lowe JA, Gregory JM, Flather RA (2001) Changes in the occurrence of storm surges around the United Kingdom under a future climate scenario using a dynamic storm surge model driven by Hadley Centre climate models. J Clim 18(3–4):179–188

    Google Scholar 

  57. Luettich RA, Westerink JJ, Scheffner NW (1992) ADCIRC: an advanced three-dimensional circulation model for shelves, coasts and estuaries. report 1: theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. U.S. army corps of engineers technical report DRP-92-6

  58. Madsen H, Jakobsen F (2004) Cyclone induced storm surge and flood forecasting in the northern Bay of Bengal. Coast Eng 51:277–296. doi:10.1016/j.coastaleng.2004.03.001

    Article  Google Scholar 

  59. Mastenbroek C, Burgers G, Janssen PAEM (1993) The dynamical coupling of a wave model and a storm surge model through the atmospheric boundary layer. J Phys Oceanogr 23:1856–1866. doi:10.1175/1520-0485(1993)023<1856:TDCOAW>2.0.CO;2

    Article  Google Scholar 

  60. Matulla C, Schöner W, Alexandersson H, von Storch H, Wang XL (2008) European storminess: late nineteenth century to present. Clim Dyn 31:125–130. doi:10.1007/s00382-007-0333-y

    Article  Google Scholar 

  61. Meier HEM, Broman B, Kjellstrom E (2004) Simulated sea level in past and future climates of the Baltic Sea. Clim Res 27:59–75. doi:10.3354/cr027059

    Article  Google Scholar 

  62. Mellor G (2003) The three-dimensional current and surface wave equations. J Phys Oceanogr 33:1978–1989. doi:10.1175/1520-0485(2003)033<1978:TTCASW>2.0.CO;2

    Article  Google Scholar 

  63. Mellor G (2005) Some consequences of the three-dimensional current and surface wave equations. J Phys Oceanogr 35:2291–2298. doi:10.1175/JPO2794.1

    Article  Google Scholar 

  64. Monbaliu J, Hargreaves J, Carretero J-C, Gerritsen H, Flather R (1999) Wave modelling in the PROMISE project. Coast Eng 37:379–407. doi:10.1016/S0378-3839(99)00035-6

    Article  Google Scholar 

  65. Monbaliu J, Padilla-Hernandez R, Hargreaves JC, Carretero Albiach JC, Luo W, Sclavo M, Günther H (2000) The spectral wave model WAM adapted for applications with high spatial resolution. Coast Eng 41:41–62. doi:10.1016/S0378-3839(00)00026-0

    Article  Google Scholar 

  66. Nicholls R, Lowe J (2004) Benefits of mitigation of climate change for coastal areas. Glob Environ Change 14:229–244. doi:10.1016/j.gloenvcha.2004.04.005

    Article  Google Scholar 

  67. Nott J (2006) Tropical cyclones and the evolution of the sedimentary coast of northern Australia. J Coast Res 22(1):49–62. doi:10.2112/05A-0005.1

    Article  Google Scholar 

  68. Osuna P, Monbaliu J (2004) Wave–current interaction in the Southern North Sea. J Mar Syst 52:1–4, 65–87. doi:10.1016/j.jmarsys.2004.03.002

    Google Scholar 

  69. Osuna P, Wolf J (2005) A numerical study on the effect of wave–current interaction processes in the hydrodynamics of the Irish Sea. In: Proceedings of the 5th international conference on ocean wave measurement and analysis. WAVES2005, Madrid, Spain, 3–7 July 2005

  70. Osuna P, Souza AJ, Wolf J (2007) Effects of the deep-water wave breaking dissipation on the wind–wave modelling in the Irish Sea. J Mar Syst 67(1–2):59–72. doi:10.1016/j.jmarsys.2006.09.003

    Google Scholar 

  71. Ozer J, Padilla-Hernández R, Monbaliu J, Alvarez Fanjul E, Carretero Albiach JC, Osuna P, Yu JCS, Wolf J (2000) A coupling module for tides, surges and waves. Coast Eng 41:1–3, 95–124. doi:10.1016/S0378-3839(00)00028-4

    Google Scholar 

  72. Peregrine DH, Jonsson IG (1983) Interaction of waves and currents. US army corps of engineers miscellaneous reports. MR83-6

  73. Pirazzoli PA, Costa S, Dornbusch U, Tomasin A (2006) Recent evolution of surge-related events and assessment of coastal flooding risk on the eastern coasts of the English Channel. Ocean Dyn 56:498–512. doi:10.1007/s10236-005-0040-3

    Article  Google Scholar 

  74. Prandle D (2000) Existing operational oceanography. Coast Eng 41(1–3):3–12. doi:10.1016/S0378-3839(00)00024-7

    Article  Google Scholar 

  75. Prandle D, Wolf J (1978) The interaction of surge and tide in the North Sea and River Thames. Geophys J R Astron Soc 55:203–216

    Google Scholar 

  76. Pugh DT (1987) Tides surges and mean sea-level. Wiley, Chichester, p 472

    Google Scholar 

  77. Pullen T, Allsop NWH, Bruce T, Kortenhaus A, Schüttrumpf H, van der Meer JW (2007) EurOtop—wave overtopping of sea defences and related structures: assessment manual. www.overtopping-manual.com

  78. Pye K, Blott SJ (2006) Coastal processes and morphological change in the Dunwich-Sizewell Area, Suffolk, UK. J Coast Res 22(3):453–473. doi:10.2112/05-0603.1

    Article  Google Scholar 

  79. Qiao F, Yuan Y, Yang Y, Zheng Q, Xia C, Ma J (2004) Wave-induced mixing in the upper ocean: distribution and application to a global ocean circulation model. Geophys Res Lett 31:L11303. doi:10.1029/2004GL019824

  80. Ris RC, Booij N, Holthuijsen LH (1999) A third-generation wave model for coastal regions, Part II. Verification. J Geophys Res 104(C4):7667–7681

    Article  Google Scholar 

  81. Rosales P, Ocampo-Torres FJ, Osuna P, Monbaliu J, Padilla-Hernandez R (2008) Wave–current interaction in coastal waters: effects on the bottom-shear stress. J Mar Syst 71:1–2, 131–148. doi:10.1016/j.jmarsys.2007.06.006

    Google Scholar 

  82. Shum CK, Woodworth PL, Andersen OB, Egbert GD, Francis O, King C, Klosko SM, LeProvost C, Li X, Molines J-M, Parke ME, Ray RD, Schlax MG, Stammer D, Tiemey CC, Vincent P, Wunsch CI (1997) Accuracy assessment of recent ocean tide models. J Geophys Res 102(Cll):25173–25194

    Google Scholar 

  83. Smith SD, Banke EG (1975) Variation of the sea surface drag coefficient with wind speed. Q J R Meteorol Soc 101:665–673. doi:10.1002/qj.49710142920

    Article  Google Scholar 

  84. Soulsby RL, Clarke S (2005) Bed shear-stresses under combined waves and currents on smooth and rough beds. Hydraulics research report TR 137

  85. Sutherland JS, Wolf J (2001) Coastal defence vulnerability 2075. In: 36th conference of river and coastal engineers, Keele University, 20–22 June 2001

  86. The WISE group: Cavaleri L, Alves J-H, Ardhuin F, Babanin A, Banner M, Belibassakis K, Benoit M, Donelan M, Groeneweg J, Herbers THC, Hwang P, Janssen PAEM, Janssen T, Lavrenov IV, Magne R, Monbaliu J, Onorato M, Polnikov V, Resio D, Rogers WE, Sheremet A, McKee Smith J, Tolman HL, van Vledder G, Wolf J, Young I (2007) Wave modelling—the state of the art. Prog Oceanogr 75:603–674

  87. Tolman HL (1990) The influence of unsteady depths and currents of tides on wind–wave propagation in shelf seas. J Phys Oceanogr 20:1166–1174. doi:10.1175/1520-0485(1990)020<1166:TIOUDA>2.0.CO;2

    Article  Google Scholar 

  88. Tönisson H, Orviku K, Jaagus J, Suursaar U, Kont A, Rivis R (2008) Coastal damages on Saaremaa Island, Estonia, caused by the extreme storm and flooding on January 9, 2005. J Coast Res 24(3):602–614. doi:10.2112/06-0631.1

    Article  Google Scholar 

  89. Trenberth KE (2008) Progress and prospects for reanalysis for weather and climate eos. Trans Am Geophys Union 89(26):234–235. doi:10.1029/2008EO260002

    Article  Google Scholar 

  90. Tsimplis MN, Woolf DK, Osborn TJ, Wakelin S, Wolf J, Flather RA, Shaw AGP, Woodworth PL, Challenor P, Blackman DL, Pert F, Yan Z, Jevrejeva S (2005) Towards a vulnerability assessment of the UK and northern European coasts: the role of regional climate variability. Philos Trans R Soc Lond A 363(1831):1329–1358. doi:10.1098/rsta.2005.1571

    Article  Google Scholar 

  91. United States Congress (2006) A failure of initiative: final report of the select bipartisan committee to investigate the preparation for and response to Hurricane Katrina. Government Printing Office, Washington, DC

  92. Wakelin SL, Proctor R (2002) The impact of meteorology on modelling storm surges in the Adriatic Sea. Global Planet Change 34(1):97–119. doi:10.1016/S0921-8181(02)00108-X

    Article  Google Scholar 

  93. Wang Y-H, Lee I-H, Wang D-P (2005) Typhoon induced extreme coastal surge: a case study at Northeast Taiwan in 1994. J Coast Res 21(3):548–552. doi:10.2112/03-0026.1

    Article  Google Scholar 

  94. Wang P, Kirby JH, Haber JD, Horwitz MH, Knorr PO, Krock JR (2006) Morphological and sedimentological impacts of Hurricane Ivan and immediate poststorm beach recovery along the northwestern Florida barrier-island coasts. J Coast Res 22(6):1382–1402. doi:10.2112/05-0440.1

    Article  Google Scholar 

  95. Westerink JJ, Luettich RA, Blain CA, Scheffner NW (1994a) ADCIRC: an advanced three-dimensional circulation model for shelves, coasts and estuaries. Report 2: users’ manual for ADCIRC-2DDI. Technical report DRP-94, U.S. army corps of engineers

  96. Westerink JJ, Luettich RA, Muccino JC (1994b) Modeling tides in the western north Atlantic using unstructured graded grids. Tellus 46A:178–199

    Google Scholar 

  97. Wiegel RL (1964) Oceanographical engineering. Prentice Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  98. Williams JA, Flather RA (2000) Interfacing the operational storm surge model to a new mesoscale atmospheric model. POL internal document no 127, Proudman Oceanographic Laboratory, Liverpool, 18 pp

  99. Wolf J (1981) Surge–tide interaction in the North Sea and River Thames, pp 75–94. In: Peregrine DH (ed) Floods due to high winds and tides. Academic Press, London

  100. Wolf J (2004) Coupling waves and currents in POLCOMS with measurements from the coastal observatory. Ann Hydrogr 6e ser 3(772):9-1–9-3

    Google Scholar 

  101. Wolf J (2007) Modelling of waves and set-up for the storm of 11–12 January 2005. Proudman Oceanographic Laboratory, internal document, no 181, 24 pp

  102. Wolf J (2008) Coupled wave and surge modeling and implications for coastal flooding. Adv Geosci 17:1–4

    Google Scholar 

  103. Wolf J, Flather RA (2005) Modelling waves and surges during the 1953 storm. Philos Trans R Soc Lond A 363:1359–1375. doi:10.1098/rsta.2005.1572

    Article  Google Scholar 

  104. Wolf J, Prandle D (1999) Some observations of wave–current interaction. Coast Eng 37(3–4):471–485

    Article  Google Scholar 

  105. Wolf J, Woolf DK (2006) Waves and climate change in the north-east Atlantic. Geophys Res Lett 33:L06604. doi:10.1029/2005GL025113

  106. Wolf J, Hubbert KP, Flather RA (1988) A feasibility study for the development of a joint surge and wave model. P.O.L. report, no 1, 109 pp

  107. Woodworth PL, Flather RA, Williams JA, Wakelin SL, Jevrejeva S (2007) The dependence of UK extreme sea levels and storm surges on the North Atlantic Oscillation. Cont Shelf Res 27(7):935–946. doi:10.1016/j.csr.2006.12.007

    Article  Google Scholar 

  108. Woth K, Weisse R, von Storch H (2005) Climate change and North Sea storm surge extremes: an ensemble study of storm surge extremes expected in a changed climate projected by four different Regional Climate Models. Ocean Dyn. doi:10.1007/s10236-005-0024-3

  109. Wu X, Flather RA (1992) Hindcasting waves using a coupled wave-tide-surge model, pp 159–170. In: Third international workshop on wave hindcasting and forecasting. Environment Canada, Montreal, Quebec

  110. Wu X, Flather RA, Wolf J (1994) A third generation wave model of European continental shelf seas with depth and current refraction due to tides and surges and its validation using GEOSAT and buoy measurements. Proudman Oceanographic Laboratory, report no 33, 48 pp

  111. Zhang MY, Li YS (1996) The synchronous coupling of a third-generation wave model and a two-dimensional storm surge model. Ocean Eng 23(6):533–543. doi:10.1016/0029-8018(95)00067-4

    Article  Google Scholar 

  112. Zhang K, Whitman D, Leatherman S, Robertson W (2005) Quantification of beach changes caused by Hurricane Floyd along Florida’s Atlantic coast using airborne laser surveys. J Coast Res 21(1):123–134. doi:10.2112/02057.1

    Article  Google Scholar 

  113. Zhang K, Xiao C, Shen J (2008) Comparison of the CEST and SLOSH models for storm surge flooding. J Coast Res 24(2):489–499. doi:10.2112/06-0709.1

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK Natural Environment Research Council.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Judith Wolf.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wolf, J. Coastal flooding: impacts of coupled wave–surge–tide models. Nat Hazards 49, 241–260 (2009). https://doi.org/10.1007/s11069-008-9316-5

Download citation

Keywords

  • Tides
  • Storm surges
  • Wind waves
  • Coastal flooding
  • Wave–current interaction
  • Numerical modelling