Skip to main content

Advertisement

Log in

Optimal interpolation of buoy data into a deterministic wind–wave model

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Third-generation wave models have been evolved in 1980s with the state-of-the-art physics of wave generation. Using these models, the real time wave estimation is made possible but, in general, it is found to be underpredicted. This is mainly due to the smoothened wind vectors from the atmospheric model. An accurate prediction of wind is thus necessary to improve the wave prediction further. A better way of overcoming the discrepancies in the wind is by the way of wave data assimilation. In the present study, an operationally efficient yet a versatile assimilation model, optimal interpolation (OI), has been presented. The weighting matrix, so-called gain matrix, has been formulated according to the model physics by which the wind generates waves. The efficiency of the assimilative model using real time buoy observations at the Arabian Sea has been evaluated and described in this article. The root mean square error reduction of wave height is found to be of the order of 30–50% at the validation stations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barzel G, Long RB (1994) Wave model fitting using the adjoint technique. In: Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM (eds) Dynamics and modeling of ocean waves. Cambridge University Press, New York

    Google Scholar 

  • Bauer E, Young IR, Hasselmann K (1994) Data assimilation using a Green’s function approach. In: Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM (eds) Dynamics and modeling of ocean waves. Cambridge University Press, New York

    Google Scholar 

  • Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions 1. Model description and validation. J Geophys Res 104(C4):7649–7666. doi:10.1029/98JC02622

    Article  Google Scholar 

  • de las Heras MM, Burgers G, Janssen PAEM (1995) Wave data assimilation in the WAM wave model. J Mar Syst 6:77–85. doi:10.1016/0924-7963(94)00019-8

    Article  Google Scholar 

  • de Valk CF (1994) A wind and wave data assimilation scheme based on the adjoint technique. In: Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM (eds) Dynamics and modeling of ocean waves. Cambridge University Press, New York

    Google Scholar 

  • de Valk CF, Calkoen CJ (1989) Wave data assimilation in a third generation wave prediction model for the North sea—an optimal control approach. Report X38, Delft Hydraulics, Delft, 123 pp

  • Golding B (1983) A wave prediction system for real time sea state forecasting. Q J R Meteorol Soc 109(460):393–416. doi:10.1002/qj.49710946011

    Article  Google Scholar 

  • Hasselmann S, Bruning C, Lionello P (1994) Towards a generalized optimal interpolation method for the assimilation of ERS-1 SAR retrieved wave spectra in a wave model. In: Proceedings of second ERS-1 symposium, Hamburg, 11–14 Oct 1993, ESA SP-361, pp 21–25

  • Hasselmann S, Bruning C, Hasselmann K, Heimbach P (1996) An improved algorithm for the retrieval of ocean wave spectra from SAR image spectra. J Geophys Res 101:16615–16629. doi:10.1029/96JC00798

    Article  Google Scholar 

  • Hasselmann S, Lionello P, Hasselmann K (1997) An optimal interpolation scheme for the assimilation of spectral wave data. J Geophys Res 102(C7):15823–15836. doi:10.1029/96JC03453

    Article  Google Scholar 

  • Hersbach H (1998) Application of adjoint of the WAM model to inverse wave modeling. J Geophys Res 103(C5):10469–10487. doi:10.1029/97JC03554

    Article  Google Scholar 

  • Holthuijsen LH, Booij N, van Endt M, Caires S, Gueded Soares C (1997) Assimilation of buoy and satellite data in wave forecasts with integral control variables. J Mar Syst 13:21–31. doi:10.1016/S0924-7963(96)00121-2

    Article  Google Scholar 

  • Janssen PAEM, Lionello P, Reistad M, Hollingsworth A (1989) Hindcasts and data assimilation studies with the WAM model during the Seasat period. J Geophys Res 94(C1):973–993. doi:10.1029/JC094iC01p00973

    Article  Google Scholar 

  • Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM (1994) Dynamics and modeling of ocean waves. Cambridge University Press, New York

    Book  Google Scholar 

  • Lionello P, Günter H (1992) Assimilation of altimeter data in a global third-generation model. J Geophys Res 97(C9):14453–14474. doi:10.1029/92JC01055

    Article  Google Scholar 

  • Lionello P, Günter H, Hansen B (1995) A sequential assimilation scheme applied to global wave analysis and prediction. J Mar Syst 6:87–107. doi:10.1016/0924-7963(94)00010-9

    Article  Google Scholar 

  • Mellor GL, Ezer T (1991) A Gulf stream model and an altimetry assimilation scheme. J Geophys Res 96:8779–8795. doi:10.1029/91JC00383

    Article  Google Scholar 

  • Miles JW (1957) On the generation of surface waves by shear flow. J Fluid Mech 3:185–204. doi:10.1017/S0022112057000567

    Article  Google Scholar 

  • Phillips OM (1957) On the generation of waves by turbulent wind. J Fluid Mech 2:417–445. doi:10.1017/S0022112057000233

    Article  Google Scholar 

  • Pinto JP, Bernardino MC, Pires SA (2005) A Kalman filter application to a spectral wave model. Nonlinear Process Geophys 12:775–782

    Google Scholar 

  • Robinson AR, Lermusianx PFJ (2000) Overview of data assimilation. Technical Note No. 62, Division of Engineering and Applied Sciences, Harward University, Cambridge

  • Sannasiraj SA, Babovic V, Chan ES (2006) Wave data assimilation using ensemble error covariances for operational wave forecast. Ocean Model 14:102–121. doi:10.1016/j.ocemod.2006.04.001

    Article  Google Scholar 

  • Snyder RL, Dobson FW, Elliot JA, Long RB (1981) Array measurements of atmospheric pressure fluctuations above surface gravity waves. J Fluid Mech 102:1–59. doi:10.1017/S0022112081002528

    Article  Google Scholar 

  • The WAMDI Group (Hasselmann S, Hasselmann K, Bauer E, Janssen PAEM, Komen GJ, Bertotti L, Lionello P, Guillaume A, CardoneVC, Greenwood JA, Reistad M, Zambresky L, Ewing JA) (1988) The WAM model—a third generation ocean wave prediction model. J Phys Oceanogr 18:1775–1810. doi :10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2

  • Thomas J (1988) Retrieval of energy spectra from measured data for assimilation into a wave model. Q J R Meteorol Soc 114:781–800. doi:10.1256/smsqj.48111

    Article  Google Scholar 

  • Tolman HL (1999) User manual and system documentation of WAVEWATCH-III, version 1.18. Technical Note No. 166, National Oceanic and Atmospheric Administration, Washington, DC

Download references

Acknowledgment

The authors would like to express their sincere gratitude to the Programme Director, National Data Buoy Program, India, for providing the buoy wave measurements and National Centre for Medium Range Weather Forecasting (NCMRWF) Centre, India, for providing the analyzed wind field for the required time period.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Sannasiraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sannasiraj, S.A., Goldstein, M.G. Optimal interpolation of buoy data into a deterministic wind–wave model. Nat Hazards 49, 261–274 (2009). https://doi.org/10.1007/s11069-008-9291-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-008-9291-x

Keywords

Navigation