Skip to main content

Avalanche hazards and mitigation in Austria: a review

Abstract

At all times natural hazards like torrents or avalanches pose a threat to settlements and infrastructures in the Austrian Alps. Since 1950 more than 1,600 persons have been killed by avalanches in Austria, which is on average approximately 30 fatalities per year. In particular, the winter periods 1950/1951 and 1953/1954 stand out with more than 100 fatalities. Those events led to an increase of avalanche control programmes in the following decades. While from the 1950s to the 1970s emphasis was placed on permanent measures (technical structures, afforestations, hazard zoning ...) additional programmes such as avalanche warning and forecasting have supplemented avalanche control measures in the last decades. Current research is focused on avalanche simulation, risk management and the influence of the forest on avalanche formation. An important area of future research is to develop improved methods for avalanche forecasting and to intensify the investigation of the dynamics of avalanches.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Alexander D (1993) Natural disasters. UCL Press, London, p 632

    Google Scholar 

  2. Ammann W (2003) Integrales risikomanagement von Naturgefahren. Jahrbuch der Geographischen Gesellschaft Bern 21:143–155

    Google Scholar 

  3. Atkins D (2000) Human factors in avalanche accidents. In: Proceedings of the international snow science workshop. Big Sky, Montana, pp 46–51

  4. Aulitzky H (1980) Abschlußbericht über das Ergebnis der Delphi-Befragung über die derzeitigen Sicherheitserwartungen gegenüber verschiedenen Methoden des permanenten und temporären Lawinenschutzes. Mitteilungen des Institutes für Wildbach- und Lawinenverbauung, Universität für Bodenkultur, vol 12, 39 pp

  5. Aulitzky H (1988) Die human- und landschaftsökologischen Folgen des Waldsterbens, In: Proceedings of the Interpraevent. Graz, Austria, Band vol 5, pp 343–356

  6. Aulitzky H (1994) Hazard mapping and zoning in Austria: methods and legal implications. Mountain Res Dev 14:307–313

    Article  Google Scholar 

  7. Bader HP, Salm B (1990) On the mechanics of snow slab release. Cold Regions Sci Technol 17:287–300

    Google Scholar 

  8. Barbolini M, Natale L, Savi F (2002) Effects of release conditions uncertainty on avalanche hazard mapping. Nat Hazards 25:225–244

    Article  Google Scholar 

  9. Barbolini M, Cappabianca F, Sailer R (2004) Empirical estimate of vulnerability relations for use in snow avalanche risk assessment. In: Brebbia CA (ed) Risk analysis IV, Southampton, pp 533–542

  10. Borter P (1999) Risikoanalyse bei gravitativen Naturgefahren, Umweltmaterialien 107/1. Bundesamt für Umwelt, Wald und Landschaft, Bern, 115 pp

    Google Scholar 

  11. Bundesministerium für Land- und Forstwirtschaft, Umwelt- und Wasserwirtschaft BMLFUW (ed) (2003) Österreichs Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft 2003, 51 pp

  12. Bundesministerium für Verkehr, BMV (ed) (1975) Erlaß über den Lawinenschutz im Bereich von Seilbahnen und Schleppliften, Zl. EB 6403/8-II/3-1975, 4 pp

  13. Bundesministerium für Verkehr, Innovation und Technologie BMVIT (ed) (2004) Erlaß über den Lawinenschutz im Bereich von Seilbahnen GZ 238961/3-II/Sch3-2004, 5 pp

  14. BUWAL (ed) (1990) Richtlinien für den Lawinenverbau im Anbruchgebiet, 76 pp

  15. Christen M, Bartelt P, Gruber U (2002) AVAL-1D: an avalanche dynamics program for the practice. In: Proceedings of the interpraevent in the Pacific Rim. Matsumoto, Japan, Band 2, pp 715–725

  16. Daffern T (1992) Avalanche safety for skiers and climbers. Rocky Mountain Books, Calgary, 192 pp

    Google Scholar 

  17. de Quervain M (1968) Die Rolle des Waldes beim Lawinenschutz. Schweizerische Zeitschrift für Forstwesen 119:393–399

    Google Scholar 

  18. Domaas U, Harbitz CB, Bakkehoi H (2002) The EU-CADZIE database for extreme and deflected snow Avalanches. Nat Hazards Earth Syst Sci 2:227–238

    Article  Google Scholar 

  19. Doppelmayr (1996) Lawinenorgel, Ferngesteuertes Pyrotechnisches Auswerfen von Sprengladungen aus Rohren für das Lawinensprengen. Informationsblatt der Fa. Doppelmayr Seilbahn- und Vertriebsgesellschaft m.b.H

  20. Dufour F, Amman W, Partelt P (2004) Swiss dynamic avalanche test site Valle de la Sione. In: Naaim M, Naaim-Bouvet F (eds) Snow avalanche test sites. Cemagref, Grenoble, France, pp 9–24

    Google Scholar 

  21. Fierz C (1998) Field observations and modeling of weak-layer evolution. Ann Glaciol 26:7–13

    Google Scholar 

  22. Fink M (ed) (1986) Raumordnung und Naturgefahren. Schriftenreihe der Österreichischen Raumordnungs- konferenz 50:134

  23. Fliri F (1998) Naturchronik von Tirol. Universitätsverlag Wagner, Innsbruck, 369 pp

    Google Scholar 

  24. Föhn P (1976) Analyse der Beziehungen zwischen Witterung, Schneedeckenaufbau und Grosslawinen am Beispiel der Katastrophenlawinen vom April 1975. Winterbericht Eidg. Inst. Schnee- u. Lawinenforschung 39:209–218

    Google Scholar 

  25. Föhn P (1991) Schnee und Lawinen, ETH Zürich,Versuchs-anstalt für Wasserbau, Hydrologie und Glaziologie. Mitteilungen 108:33–48

    Google Scholar 

  26. Gabl K (1988) Das Lawinenereignis im März 1988 in St. Anton am Arlberg aus meteorologischer Sicht. FBVA-Berichte 68:97–107

    Google Scholar 

  27. Gabl K (2000) Der Schnee im Februar 1999 im Westen Österreichs aus meteorologischer und klimatologischer Sicht. Wildbach- und Lawinenverbau 64(141):69–80

    Google Scholar 

  28. Gauer P, Lied K, Kristensen K, Harbitz C, Issler D, Jóhannesson T (2005) Ryggfonn avalanche test site, Norway: full-scale measurements. Geophysical Research Abstracts, Vol 7, 08086. European Geophysical Union 2005

  29. Gauer P, Rammer L, Kern M, Lied K, Kristensen K, Schreiber H (2006) On pulsed Doppler radar measurements of avalanches and their implication to avalanche dynamics. Geophysical Research Abstracts, Vol 8, 04683. European Geophysical Union 2006

  30. Gemeinde Blons (ed) (2004) Lawinen-Katastrophe 1954 in Blons. Folder, 2 pp

  31. Gubler H (1976) Künstliche Auslösung von Lawinen durch Sprengungen (Zwischenbericht). Mitteilungen des Eidgenössischen Institutes für Schnee- und Lawinenforschung, vol 32, 94 pp

  32. Gubler H (1983) Künstliche Auslösung von Lawinen durch Sprengungen; Eine Anleitung für den Praktiker. Mitteilungen des Eidgenössischen Institutes für Schnee- und Lawinenforschung 36, 2. überarbeitete Auflage, 39 pp

  33. Gubler H (1986) Temporäre und permanente Lawinenschutzmassnahmen für touristische Anlagen. Mitteilungen des Eidgenössischen Institutes für Schnee- und Lawinenforschung, vol 45, 10 pp

  34. Gumbel EJ (1958) Statistics of extremes. Columbia University Press, New York, 375 pp

    Google Scholar 

  35. Hanausek E (1957) Lawinenverbauung mit Stahlkonstruktion am Heuberg bei Häselgehr. Bündnerwald 11:31–43

    Google Scholar 

  36. Heumader J (2000) The catastrophic avalanche disasters of Galtür and Valzur on the 23 and 24 of February 1999 in the Paznaun Valley/Tyrol. In: Proceedings of the international workshop hazard mapping in avalanching areas. St. Christoph, Austria, pp 179–185

  37. Höller P, Schaffhauser H (1992) What do ski mountaineers know about snow cover and avalanche formation? In: Proceedings of the international snow science workshop. Breckenridge, Colorado, pp 270–275

  38. Höller P, Schaffhauser H (2000) The avalanches of Galtür and Valzur of Feb. 1999. In: Proceedings of the international snow science workshop. Big Sky, Montana, pp 514–518

  39. Höller P (2004) Strategische Methoden zur Einschätzung des Lawinenrisikos im freien ungesicherten Raum-was kann von diesen Methoden erwartet werden? Sicherheit im Bergland. Jahrbuch des Kuratoriums für Alpine Sicherheit, pp 215–224

  40. Hopf J (1998) An overview of natural hazard zoning with special reference to avalanches, In: Proceedings of the anniversary conference 25 years of snow, avalanche research. Vol 203, Oslo, May 1998, Norwegian Geotechnical Institute Publication, pp 28–35

  41. Hufnagl HJ (1986) Rechnerische Überprüfung von fünf Lawinen im Katastrophenwinter 1983/84 an Hand bekannter Berechnungsmethoden. Diploma Thesis, University of Agriculture, Vienna, 330 pp

  42. Huttenlau M (2004) Risikoanalyse im hinteren Stubaital, Tirol, Diploma Thesis, University of Innsbruck, Innsbruck, 134 pp

  43. In der Gand H (1978) Wald als Lawinenschutz. Mitteilungen der Forstlichen Bundesversuchsanstalt 125:113–127

    Google Scholar 

  44. Issler D (1999) European avalanche test sites. Mitteilungen des Eidgenössischen Institutes für Schnee- und Lawinenforschung, vol 59, 122 pp

  45. Johnson B, Jamieon B, Johnston CD (2000) Field data and theory for human-triggered “whumpfs” and remote avalanches. In: Proceedings of the international snow science workshop. Big Sky, Montana, pp 208–214

  46. Jörg P, Fromm R, Sailer R, Schaffhauser A (2006) Measuring snow depth with a terrestrial laser ranging system. In: Proceedings of the international snow science workshop. Telluride, Colorado, pp 452–460

  47. Khakzadeh LM (2004) Rechtsfragen des Lawinenschutzes. Neuer wissenschaftlicher Verlag, Vienna, 174 pp

    Google Scholar 

  48. Keiler M (2004) Development of the damage potential resulting from avalanche risk in the period 1950–2000, case study Galtür. Nat Hazards Earth Systems Sciences 4:249–256

    Google Scholar 

  49. Keiler M, Zischg A, Fuchs S, Hama M, Stötter J (2005) Avalanche related damage potential - changes of persons and mobile values since the mid-twentieth century, case study Galtür. Nat Hazards Earth Syst Sci 5:49–58

    Article  Google Scholar 

  50. Kienholz H, Krummenacher B, Kipfer A, Perret S (2004) Aspect of integral risk management in practice - considerations with respect to mountain hazards in Switzerland. Österreichische Wasser- und Abfallwirtschaft 56:43–50

    Google Scholar 

  51. Kleemayr K, Fromm, R (2006) ADS-Bericht No.1-Winter 2005/06. Interner Bericht BFW, Department Natural Hazards, 9 pp

  52. Land Tirol (ed) (2000) Lawinenhandbuch. Tyrolia Verlag, Innsbruck, 260 pp

  53. Längle G (1977) Der Lawinenwarndienst in Vorarlberg, Für die Sicherheit im Bergland, Jahrbuch 1977 des Österreichischen Kuratoriums für alpine Sicherheit, pp 91–93

  54. Laternser M, Schneebeli M (2002) Temporal trend and spatial distribution of avalanche activity during the last 50 years in Switzerland. Nat Hazards 27:201–230

    Article  Google Scholar 

  55. Lied K, Bakkehoi S (1980) Empirical calculations of snow - avalanche run-out distance based on topographical parameters. J Glaciol 26:165–177

    Google Scholar 

  56. Lied K, Weiler C, Bakkehoi S, Hopf J (1995) Calculation methods for avalanche run-out distance for the Austrian Alps. In: Sivardiere F (ed) The contribution of scientific research to safety with snow, ice and avalanche. Association nationale pour l’etude de la neige et des avalanches, Grenoble, France, pp 63–68

    Google Scholar 

  57. Lied K, Moe A, Kristensen K, Issler D (2004) Rygfonn. Full scale avalanche test site and the effect of the catching dam. In: Naaim M, Naaim-Bouvet F (eds) Snow avalanche test sites. Cemagref, Grenoble, France, pp 9–24

    Google Scholar 

  58. Luzian R (2002) Die österreichische Schadenslawinen-Datenbank. Forschungsanliegen – Aufbau – erste Ergebnisse. Mitteilungen der Forstlichen Bundesversuchsanstalt 175:51

    Google Scholar 

  59. Luzian R, Pindur P (2000) Klimageschichtliche Forschung und Lawinengeschehen. Wildbach- und Lawinenverbau 142:85–92

    Google Scholar 

  60. Margreth S, Stoffel L, Wilhelm C (2003) Winter opening of high alpine pass roads - analysis and case studies from the Swiss Alps. Cold Regions Sci Technol 37:467–482

    Article  Google Scholar 

  61. Martin E, Giraud G, Lejeune Y, Boudart G (2001) Impact of climate change on avalanche hazard. Ann Glaciol 32:163–167

    Google Scholar 

  62. McCammon I, Haegeli P (2004) Comparing avalanche decision frameworks using accidents data from the United States. In: Proceedings of the international snow science workshop. Jackson Hole, Wyoming, pp 502–512

  63. McClung D, Schaerer P (1993) The avalanche handbook. The Mountaineers, Seattle, 271 pp

    Google Scholar 

  64. McClung D (2000) Extreme avalanche runout in space and time. Can Geotech J 37:161–170

    Article  Google Scholar 

  65. Mears A (1992) Snow avalanche hazard analysis for land-use planning and engineering, Colorado Geological Survey. Bulletin 49:55

    Google Scholar 

  66. Meister R (1994) Country-wide avalanche warning in Switzerland. In: Proceedings of the international snow science workshop. Snowbird, Utah, pp 58–71

  67. Merwald I (1985) Lawinenereignisse und Witterungsablauf in Österreich. Winter 1974/75, 1975/76 und 1976/77. FBVA-Berichte 10:76

    Google Scholar 

  68. Merz H, Schneider T, Bohnenblust H (1995) Bewertung technischer Risiken, Polyprojekt Risiko und Sicherheit, Dokumente Nr. 3. vdf Hochschulverlag AG, Zürich, 174 pp

    Google Scholar 

  69. Nairz P, Kriz K (2005) Online decision support for avalanche risk management. In: Proceedings of the international snow science workshop. Jackson Hole, Wyoming, pp 514–519

  70. Nishimura K, Sandersen F, Kristensen K, Lied K (1995) Measurements of powder snow avalanche. Surveys Geophys 16:649–660

    Article  Google Scholar 

  71. Pielmeier C, Schneebeli M (2000) Measuring snow profiles with high-resolution: interpretation of the force–distance signal from a snow micro penetrometer. In: Proceedings of the international snow science workshop. Big Sky, Montana, pp 215–222

  72. Rammer L, Tiefenbacher F, Kern M (2005) Comparison of avalanche-velocity measurements by means of continuous wave radar, pulsed Doppler radar and optical methods. Geophysical Research Abstracts, Vol 7, 07265. European Geophysical Union 2005

  73. Republik Österreich (ed) (1975) Forstgesetz 1975, Bundesgesetzblatt 440/75

  74. Republik Österreich (ed) (1976) Verordnung über die Gefahrenzonenpläne, Bundesgesetzblatt 436/76

  75. Riegl (2006) RIEGL Laser profile measurements systems, http://www.riegl.com, RIEGL Austria, 2005

  76. Rudolf-Miklau F, Schmid F (2004) Implementation, application and enforcement of hazard zone maps for torrent and avalanche control in Austria. In: Proceedings of the international conference water and society. Vienna, pp 83–107

  77. Sailer R, Rammer L, Sampl P (2002) Recalculation of an artificially released avalanche with SAMOS and validation with measurements from a pulsed Doppler radar. Nat Hazards Earth Syst Sci 2:211–216

    Article  Google Scholar 

  78. Sailer R, Klebinder K, Khakzadeh L, Heller A (2004) Integraler Krisen- und Risikomanagementplan der Gemeinde St. Anton. In: Beiträge zum 16, AGIT Symposium 2004, Salzburg, pp 578–584

  79. Salm B (1982) Lawinenkunde für den Praktiker. Verlag des SAC, Zürich, 148 pp

    Google Scholar 

  80. Salm B (1986) Möglichkeiten und Grenzen bei der Einschätzung des Lawinenrisikos, Sicherheit im Bergland. Jahrbuch 1986 des Kuratoriums für Alpine Sicherheit, pp 161–180

  81. Salm B, Burkard A, Gubler H (1990) Berechnung von Fließlawinen – eine Anleitung für Praktiker mit Beispielen. Mitteilungen des Eidgenössischen Institutes für Schnee- und Lawinenforschung, vol 47, 37 pp

  82. Salm B (1997) Principles of avalanche hazard mapping in Switzerland. In: Proceedings of the international conference on snow engineering. Balkema, Rotterdam, pp 531–538

  83. Salzburger N (2005) Raketen gegen Lawinen. Salzburger Nachrichten vom 16, Nov. 2005

  84. Sampl P, Zwinger T (2004) Avalanche simulation with SAMOS. Ann Glaciol 38:393–398

    Google Scholar 

  85. SATSIE (2006) Avalanche studies and model validation in Europe, Homepage of the EU-project SATSIE, http://www.leeds.ac.uk/satsie/ requested in August 2006

  86. Sauermoser S (2006) Avalanche hazard mapping – 30 years experience in Austria. In: Proceedings international snow science workshop. Telluride, Colorado, pp 314–321

  87. Schellander H (2007) Extremwertstatistik – eine effiziente Methode zur Risikoabschätzung, ZAMG, Innsbruck (in press)

  88. Schimpp O (1975) Lawinensprengbahnen. Schul- und Sportstättenbau 75/3:23–27

    Google Scholar 

  89. Schippers J (1992) Gaz-Ex avalanche control system. In: Proceedings of the international snow science workshop. Breckenridge, Colorado, pp 72–79

  90. Schleiss VG (1989) Roger Pass Snow Avalanche Atlas. Environment Canada, Canadian Parks Service, 313 pp

  91. Schneebeli M, Laternser M, Ammann W (1997) Destructive snow avalanches and climate change in the Swiss Alps. Ecol Geol Helvetiae 90:457–461

    Google Scholar 

  92. Schreiber H, Randeu W, Schaffhauser H, Rammer L (2001) Avalanche dynamics measurements by pulsed Doppler radar. Ann Glaciol 32:275–280

    Google Scholar 

  93. Stethem C, Jamieson B, Schaerer P, Liverman D, German D, Walker S (2003) Snow avalanche hazard in Canada - A review. Nat Hazards 28:487–515

    Article  Google Scholar 

  94. Unesco (ed) (1981) Avalanche Atlas, Paris, 265 pp

  95. Varnes D (1984) Landslide hazard zonation: a review of principles and practice. Unesco, Paris, 63 pp

    Google Scholar 

  96. Voellmy A (1955) Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung 73:159–165, 212–217, 246–249, 280–285

    Google Scholar 

  97. Weiss G (1999) Die Schutzwaldpolitik in Österreich, Einsatz forstpolitischer Instrumente zum Schutz vor Naturgefahren, doctoral thesis, University of Agriculture,Vienna, 340 pp

  98. Weiss G (2002) The political practice of natural hazards control in Austria and the question of climate change. In: Steininger K, Weck-Hannemann H (ed) Global environmental change in alpine regions. Cheltenham, pp 131–149

  99. Wisner B, Blaikie P, Cannon T, Davis I (2004) At risk: Natural hazards, people’s vulnerabilities, and disasters. Routledge, London, 471 pp

    Google Scholar 

  100. Wilhelm C (1997) Wirtschaftlichkeit im Lawinenschutz. Methodik und Erhebungen zur Beurteilung von Schutzmaßnahmen mittels quantitativer Risikoanalyse und ökonomischer Bewertung. Mitteilungen des Eidgenössischen Institutes für Schnee- und Lawinenforschung, vol 54, 309 pp

  101. Wilhelm C (1999) Kosten-Wirksamkeit von Lawinenschutz- maßnahmen auf Verkehrsachsen, Bundesamt für Umwelt. Wald und Landschaft, Bern, 110 pp

    Google Scholar 

  102. Würtl W (1999) Die Wahrnehmung von Naturgefahren bei Schitourengehern. Seminarbeit Universität Innsbruck, 48 pp

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Höller.

Appendix: Major avalanche cycles and disasters

Appendix: Major avalanche cycles and disasters

Avalanche cycle January 1951

January 1951 was characterised by the worst avalanche cycle within the last five decades. Great avalanches occurred in several parts of the Austrian Alps, in particular in the federal states of Vorarlberg, Tyrol and Salzburg. From January 14 to January 21 dozens of persons were killed by avalanches. According to Fliri (1998) major events were documented on January 14 (14 fatalities in Bad Gastein and 14 fatalities in Heiligenblut), on January 20 (10 fatalities in Schwendberg and nine fatalities in Lanersbach) and on January 21 (seven fatalities in Sölden and 10 fatalities in Hippach). In total 135 persons were killed by avalanches in the period 1950/1951.

Avalanche cycle January 1954

In January 1954 the federal state of Vorarlberg was affected by a huge number of avalanches. The beginning of the major avalanche cycle (January 9 to January 12) was on January 9 with heavy snowfall, in particular in the Walsertal. Two days later one of the most disastrous accidents occurred in Blons (January 11), where 56 persons were killed by avalanches (Gemeinde Blons 2004). The total number of fatalities in winter 1953/1954 was 143.

Avalanche cycle January 1968

A front from the northwest led to high precipitation rates between January 24 and January 28 resulting in numerous avalanches. In Danöfen (Vorarlberg) eight persons were killed by an avalanche.

Avalanche cycle in March and April 1975

This cycle can be divided into three parts: the first from March 13 to March 19, the second from March 27 to March 31 and the third from April 3 to April 6. The cycles were mainly due to several low-pressure areas between the Mediterranean and Scandinavia and Central Europe, respectively. These weather conditions resulted in heavy snowfall in the central Alps (Tyrol, Salzburg and Carinthia), especially in the south and south-west. In Mallnitz eight persons were killed in a holiday colony on March 31, 1975.

Avalanche cycle March 1988

Heavy snowfall began already on March 12. According to Gabl (1988), 60–70 cm of new snow accumulated in St. Anton within 12 h. Up to the following morning the increase was once more 110 cm of new snow (Gabl 1988).

In the morning of March 13 a great avalanche was released near the Zwölferkopf at about 2,500 m. The avalanche affected only a small part of St. Anton; however, seven persons were killed.

Avalanche cycle February 1999

The beginning of the year was characterised by a dry and sunny January. However, conditions changed dramatically at the end of January. Three storm periods (January 26 to January 31, February 5 to February 9 and February 17 to February 24) brought more than 2 m of new snow. In Galtür the total height of precipitation in February 1999 was 245 mm, which was about four times as much as the average (Gabl 2000).

These storm periods led to a distinctive avalanche cycle in the second and third decade of February. On February 23 a huge avalanche affected Galtür (31 fatalities), one day later an avalanche killed seven persons in the small village Valzur (Höller and Schaffhauser 2000).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Höller, P. Avalanche hazards and mitigation in Austria: a review. Nat Hazards 43, 81–101 (2007). https://doi.org/10.1007/s11069-007-9109-2

Download citation

Keywords

  • Avalanche accidents
  • Avalanche hazard
  • Avalanche control