Skip to main content
Log in

Pairing geotechnics and fluvial hydraulics for the prediction of the hazard zones of an exceptional flooding

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The direct consequences of exceptional floods are usually considered to be limited to the maximum flooding zone created downstream. However, considering the magnitude of the flows, the morphology of the flooded zone could undergo deep changes. To predict the hazard zone on a river undergoing exceptional flooding, numerical simulations are widely used. In this article, the simulation of the evolution of river reaches resulting from such catastrophic events is performed by coupling the hydraulic and sediment transport numerical model GSTARS with a developed slope stability model based on the Bishop’s simplified method. This is a novel methodology for the delimitation of hazard zones along riverbanks by taking into consideration not only the flood risks but also the possible induced landslides. Indeed, each section of the river reach is subject to changes caused by the river hydraulics and the associated erosion or sediment deposition and also undergoes profile changes caused by possible landslides. The initial hydraulic and geotechnical characteristics are first defined and then used to test the stability of several slopes of representative sections of the river reaches before the dam break. Validation tests are performed on specific reaches of the Outaouais River (Quebec) undergoing a dam break flood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abramson LW, Thomas SL, Sunil S, Glenn MB (2001) Slope stability and stabilization. John Wiley & Sons, Chichester

    Google Scholar 

  • Arfken G (1985) The method of steepest descents. In: Mathematical methods for physicists, Academic Press, 3ème ed. Orlando FL, pp 428–436

  • Bishop AW (1955) The use of the slip circle in the stability analysis of slopes. Géotechnique 5:7–17

    Article  Google Scholar 

  • Chang HH (1979) Minimum stream power and river channel patterns. J Hydrol 41:303–327

    Article  Google Scholar 

  • Chang HH (1980a) Stable alluvial canal design. J Hydr Eng Div-ASCE 106(HY5):873–891

    Google Scholar 

  • Chang HH (1980b) Geometry of gravel streams. J Hydr Eng Div-ASCE 106(HY9):1443–1456

    Google Scholar 

  • Chang HH (1982a) Mathematical model for erodible channels. J Hydr Div-ASCE 108(HY5):678–689

    Google Scholar 

  • Chang HH (1982b) Fluvial hydraulics of deltas and alluvial fans. J Hydr Div-ASCE 108(HY11):1282–1295

    Google Scholar 

  • Chang HH (1983) Energy expenditure in curved open channels. J Hydr Div-ASCE 109(HY7):1012–1022

    Article  Google Scholar 

  • Chang HH, Hill JC (1977) Minimum stream power for rivers and deltas. J Hydr Div-ASCE 103(HY12):1375–1389

    Google Scholar 

  • Lalonde J, Lavoie A (1981) Première-Chut: Description des berges en aval de la centrale. Direction Projets de Centrales, Service Géologie et Géotechnique, Hydro-Québec

  • Lapointe M, Driscoll S, Bergeron N, Secretan Y, Leclerc M (1998) Response of the Ha! Ha! River to the flood of July 1996 in Saguenay Region of Quebec: large-scale avulsion in a river valley. Water Resour Res 34(9):2383–2392

    Article  Google Scholar 

  • Mahdi T (2004) Prévision par modélisation numérique de la zone de risque bordant un tronçon de rivière subissant une rupture de barrage. Ph.D. thesis. Dept. of Civil Geological and Mining, Ecole Polytechnique de Montréal, Canada

  • Mahdi T, Marche C (2003) Prévision par modélisation numérique de la zone de risqué bordant un tronçon de rivière subissant une crue exceptionnelle. Can J Civil Eng 30(3):568–579

    Article  Google Scholar 

  • Philiponnat G, Hubert B (1998) Fondation et Ouvrages en Terre. Eyrolles. France

    Google Scholar 

  • Song CCS, Yang CT (1979) Velocity profiles and minimum stream power. J Hydr Divi-ASCE 105(HY8):981–998

    Google Scholar 

  • Song CCS, Yang CT (1982) Minimum energy and energy dissipation rate. J Hydr Divi-ASCE 108(HY5):690–706

    Google Scholar 

  • St-Arnaud G (1981) Étude des berges entre la centrale Première-Chute et le lac Témiscaming. Direction Projets de Centrales, Service Géologie et Géotechnique, Hydro-Québec

  • Thibault C (2000) Résumé des données disponibles entre la centrale Première-Chute et le lac Témiscaming, Rivière des Quinze. Étude d’érosion des berges en cas de rupture de barrage. Report for Hydro-Québec. Laval University, Canada

    Google Scholar 

  • Yang CT, Simões F (2000) User’s Manual for GSTARS 2.1 (Generalized Stream Tube model for Alluvial River Simulation version 2.1). U.S. Bureau of Reclamation, Technical Service Center, Denver, Colorado

    Google Scholar 

  • Yang CT, Song CCS (1979) Theory of minimum rate of energy dissipation. J Hydr Divi-ASCE 105(HY7):769–784

    Google Scholar 

  • Yang CT, Song CCS (1986) Theory of minimum energy and energy dissipation rate. In: Cheremisinoff NP (ed) Encyclopedia of fluid mechanics, vol. 1, chap. 11. Gulf Publishing Company, Houston, Tex, pp 353–399

    Google Scholar 

Download references

Acknowledgements

The previous results are the fruit of research accomplished due to the support of Hydro-Québec to whom the writer expresses his thanks. Additionally, the writer thanks the anonymous reviewers for their review suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mahdi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahdi, T. Pairing geotechnics and fluvial hydraulics for the prediction of the hazard zones of an exceptional flooding. Nat Hazards 42, 225–236 (2007). https://doi.org/10.1007/s11069-006-9096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-006-9096-8

Keywords

Navigation