Skip to main content

Evaluating the Impact of Drought Using Remote Sensing in a Mediterranean, Semi-arid Region

Abstract

This paper analyses monthly differences in drought impact on vegetation activity in a semi-arid region in the north-east of the Iberian Peninsula between 1987 and 2000. The study determines spatial differences in the effects of drought on the natural vegetation and agricultural crops by means of the joint use of vegetation indexes derived from AVHRR images, a drought index (standardized precipitation index), and Geographic Information Systems. The results show that the effect of drought on vegetation varies noticeably between areas, a pattern that is determined mainly by the location of land-cover types. The influence also varies each month and, in general, is higher during the spring and summer. Aridity and vegetation characteristics similarly account, in part, for spatial differences in the impact of drought on vegetation. In general, the most arid areas, where vegetation cover and activity are low, are those in which the interannual variability of vegetation activity is more determined by the drought occurrence. In assessing drought impact, this analysis takes into account the effects of drought on the vegetation and also considers spatial and seasonal differences. The results should be useful for the management of natural vegetation and crops and for the development of better drought mitigation strategies.

This is a preview of subscription content, access via your institution.

References

  • Abrams M. D., Schultz J. C. and Kleiner K. W. (1990). Ecophysiological responses in mesic versus xeric hardwood species to an early-season drought in central Pennsylvania. Forest Sci. 36: 970–981 .

    Google Scholar 

  • Abrams M. D., Ruffuer M. C. and Morgan T. A. (1998). Tree-ring responses to drought across species and contrasting sites in the ridge and valley of central Pennsylvania. Forest Sci. 44: 550–558 .

    Google Scholar 

  • Agnew C. T. (2000). Using the SPI to Identify drought. Drought Network News 12: 6–12 .

    Google Scholar 

  • Alberto F. and Machín J. (1978). Delimitación de suelos con régimen de humedad árido en la depresión media del Ebro. Trabajos Compostelanos de Biología 6: 30–45 .

    Google Scholar 

  • Alexandersson H. (1986). A homogeneity test applied to precipitation data. J. Climatol. 6: 661–675 .

    Google Scholar 

  • Alexandersson H. and Moberg A. (1997). Homogenization of Swedish temperature data. Part I: Homogeneity test for lineal trends. Int. J. Climatol. 17: 25–34 .

    Article  Google Scholar 

  • Alexandrov V. A. and Hoogenboom G. (2000). The impact of climate variability and change on crop yield in Bulgaria. Agric. Forest Meteorol. 104: 315–327 .

    Article  Google Scholar 

  • Alley W. M. (1984). The Palmer drought severity index: limitations and applications. J. Appl. Meteorol. 23: 1100–1109 .

    Article  Google Scholar 

  • Austin R. B., Cantero-Martínez C., Arrúe J. L., Playán E. and Cano-Marcellán P. (1998). Yield–rainfall relationships in cereal cropping systems in the Ebro river valley of Spain. Eur. J. Agron. 8: 239–248 .

    Article  Google Scholar 

  • Bannari A., Morin D., Bonn F. and Huete A. R. (1995). A review of vegetation indices. Remote Sensing Rev. 13: 95–120 .

    Google Scholar 

  • Bennie A. T. P. and Hensley M. (2001). Maximizing precipitation utilization in dry-land agriculture in South Africa – a review. J. Hydrol. 241: 124–139 .

    Article  Google Scholar 

  • Beran M. A. and Rodier J. A. (1985). Hydrological Aspects of Drought. Studies and Reports in Hydrology. 39UNESCO – WMO, Geneve .

    Google Scholar 

  • Bonaccorso B., Bordi I., Cancielliere A., Rossi G. and Sutera A. (2003). Spatial variability of drought: an analysis of the SPI in Sicily. Water Resour. Manage. 17: 273–296 .

    Article  Google Scholar 

  • Bonifacio R., Dugdale G. and Milford J. R. (1993). Sahelian rangeland production in relation to rainfall estimates from Meteosat. Int. J. Remote Sensing 14: 2695–2711 .

    Google Scholar 

  • Botzan T. M., Mariño M. A. and Necula A. I. (1998). Modified De Martonne aridity index: application to the Napa basin, California. Phys. Geogr. 19: 55–70 .

    Google Scholar 

  • Braun-Blanquet J. and Bolós O. (1957). Les groupements vegetaux du bassin de l’Ebre. Anal. Estación Exp. Aula Dei 5: 1–4 .

    Google Scholar 

  • Brown N. J. and Fuller R. (1996). A CORINE map of Great Britain by automated means. Techniques for automatic generalization of the land cover map of Great Britain. Int. J. Geogr. Inform. Sci. 10: 937–953 .

    Article  Google Scholar 

  • Bruins H. J. and Berliner P. R. (1998). Bioclimatic aridity, climatic variability, drought and desertification: definitions and management options. In: Bruins, H. J. and Lithwick, H. (eds) The Arid Frontier-Interactive Management of Environment and Development, pp. Kluwer Academic Publishers, Dordrecht, The Netherlands .

    Google Scholar 

  • Burgess D. W., Lewis P. and Muller J. P. A. L. (1995). Topographic effects in AVHRR-NDVI data. Remote Sensing Environ. 54: 223–232 .

    Article  Google Scholar 

  • Castro-Díez P. and Montserrat-Martí G. (1998). Phenological patterns of fifteen Mediterranean phanaerophytes from Quercus ilex communities of NE-Spain. Plant Ecol. 139: 103–112 .

    Article  Google Scholar 

  • CLC: 1990, Proyecto Ocupación del suelo del Programa CORINE: Definiciones de la clasificación Española. Comisión Técnica del Proyecto Ocupación del Suelo de España. Instituto Geográfico Nacional.

  • Creus, J. and Saz, M.A.: 2004, La sequía como principal factor limitante del desarrollo de Pinus halepensis Mill. en el sector central del valle del Ebro, In: García-Codrón (ed.), El clima entre el mar y la montaña. Asociación Española de Climatología, Santander.

  • Cuadrat J. M. (1999). El clima de Aragón Cai 100. Zaragoza, Spain, 109 .

    Google Scholar 

  • Davenport M. L. and Nicholson S. E. (1993). On the relation between rainfall and the normalized difference vegetation index for diverse vegetation types in east Africa. Int. J. Remote Sensing 14: 2369–2389 .

    Google Scholar 

  • Di L., Rundquist D. C. and Han L. (1994). Modelling relationships between NDVI and precipitation during vegetative growth cycles. Int. J. Remote Sensing 15: 2121–2136 .

    Google Scholar 

  • Dorenboos J. and Pruitt W. O. (1976). Las necesidades de agua de los cultivos. Estudio FAO: Riego y drenaje. FAO, Roma, 194 .

    Google Scholar 

  • Eastman J. R. and Fulk M. A. (1993). Long sequence time series evolution using standardized principal component analysis. Photogrammet. Eng. Remote Sensing 53: 1649–1658 .

    Google Scholar 

  • Edwards, D.C. and McKee, T.B.: 1997, Characteristics of 20th century drought in the United States at multiple time scales, Atmospheric Science Paper No. 634.

  • Errea M. P. and Lasanta T. (1993). Política agraria comunitaria y retirada de tierras de cultivo en Aragón (1989–1992). Rev. Estudios Agrosoc. 164: 43–60 .

    Google Scholar 

  • Farrar T. J., Nicholson S. E. and Lare A. R. (1994). The influence of soil type on the relationships between NDVI, rainfall and soil moisture in semiarid Botswana II: NDVI response to soil moisture. Remote Sensing Environ. 50: 121–133 .

    Article  Google Scholar 

  • Fritts H. C. (1976). Tree Rings and Climate. Academic Press, Londres .

    Google Scholar 

  • Frutos, L. M.: 1976, Estudio geográfico del campo de Zaragoza, CSIC, 342 pp.

  • Frutos L. M. (1982). El campo en Aragón. Librería General, Zaragoza, 195 .

    Google Scholar 

  • Gallo K. P., Daughtry C. S. T. and Bauer M. E. (1985). Spectral estimation of absorbed photosynthetically active radiation in corn canopies. Remote Sensing Environ. 17: 221–232 .

    Article  Google Scholar 

  • Geist H. J. and Lambin E. F. (2004). Dynamic causal patterns of desertification. Bioscience 54: 817–829 .

    Article  Google Scholar 

  • Gibelin A. L. and Déqué M. (2003). Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Climate Dynamics 20: 327–339 .

    Google Scholar 

  • Glantz M. H. (1994). Drought, desertification and food production. In: Glantz, H. H. (eds) Drought Follows the Plow, pp 6–22. Cambridge University Press, Cambridge .

    Google Scholar 

  • González-Alonso F., Cuevas J. M., Casanova J. M., Calle A. and Illera P. (1995). Drought monitoring in Spain using satellite remote sensing. In: (eds) Sensors and Environmental Applications of Remote Sensing, pp 88–90. Balkema, Rotterdam .

    Google Scholar 

  • González-Alonso F., Calle A., Vázquez A., Casanova J. L., Cuevas J. M. and Romo A. (2001). Seguimiento de la sequía en España, en el año 2000, mediante técnicas de teledetección espacial. In: Rosell, J. I. and Martínez-Casasnovas, J. A. (eds) Teledetección, Medio Ambiente y Cambio Global, pp 83–85. Lleida, Spain .

    Google Scholar 

  • Groten S. M. E. and Ocatre R. (2002). Monitoring the length of the growing season with NOAA. Int. J. Remote Sensing 23: 2797–2815 .

    Article  Google Scholar 

  • Guerrero J., Alberto F., Hodgson J., García-Ruiz J. M. and Montserrat G. (1999). Plant community patterns in a gypsum area of NE Spain. 1. Interactions with topographic factors and soil erosion. J. Arid Environ. 41: 401–410 .

    Article  Google Scholar 

  • Gutman G. (1990). Towards monitoring droughts from space. J. Climate 3: 282–295 .

    Article  Google Scholar 

  • Guttman N. B. (1998). Comparing the Palmer drought index and the Standardized Precipitation Index. J. Am. Water Resour. Assoc. 34: 113–121 .

    Google Scholar 

  • Guttman N. B. (1999). Accepting the standardized precipitation index: a calculation algorithm. J. Am. Water Resour. Assoc. 35: 311–322 .

    Google Scholar 

  • Hanson P. J. and Weltzin J. F. (2000). Drought disturbance from climate change: response of United States forests. Sci. Total Environ. 262: 205–220 .

    Article  Google Scholar 

  • Hayes M., Wilhite D. A., Svoboda M. and Vanyarkho O. (1999). Monitoring the 1996 drought using the Standardized Precipitation Index. Bull. Am. Meteorol. Soc. 80: 429–438 .

    Article  Google Scholar 

  • Heim R. R. (2002). A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 83: 1149–1165 .

    Google Scholar 

  • Holben B. (1986). Characteristics of maximum value composite images from temporal AVHRR data. Int. J. Remote Sensing 6: 1271–1328 .

    Google Scholar 

  • Houghton J. T., Ding Y., Giggs D., Noguet M., Dai X., Maskell A., Johnson C. A. and Linden P. (2001). Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge .

    Google Scholar 

  • Ichii K., Kawabata A. and Yamaguchi Y. (2002). Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982–1990. Int. J. Remote Sensing 23: 3873–3878 .

    Article  Google Scholar 

  • Illera P., Delgado J. A. and Calle A. (1996). A navigation algorithm for satellite images. Int. J. Remote Sensing 17: 577–588 .

    Google Scholar 

  • Illera P., Fernández A. and Delgado J. (1996b). Temporal evolution of the NDVI as an indicator of forest fire danger. Int. J. Remote Sensing 17: 1093–1105 .

    Google Scholar 

  • Ji L. and Peters A. J. (2003). Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sensing Environ. 87: 85–98 .

    Article  Google Scholar 

  • Jones P. D., Hulme M., Briffa K. R. and Jones C. G. (1996). Summer moisture availability over Europe in the Hadley centre general circulation model based on the Palmer drought severity index. Int. J. Climatol. 16: 155–172 .

    Article  Google Scholar 

  • Jonsson S., Gunnarson B. and Criado C. (2002). Drought is the major limiting factor for tree-ring growth of high-altitude Canary island pines on Tenerife. Geogr. Annal. 84A: 51–71 .

    Article  Google Scholar 

  • Karl T. R. (1986). The sensitivity of the Palmer Drought Severity Index and the Palmer z-Index to their calibration coefficients including potential evapotranspiration. J. Climate Appl. Meteorol. 25: 77–86 .

    Article  Google Scholar 

  • Karl T. R. and Koscielny A. J. (1982). Drought in the United States: 1895–1981. J. Climatol. 2: 313–329 .

    Google Scholar 

  • Kaufman Y. J. and Holben B. N. (1993). Calibration of the AVHRR visible and near-IR bands by atmospheric scattering, ocean glint and desert reflection. Int. J. Remote Sensing 14: 21–52 .

    Google Scholar 

  • Kogan F. N. (1990). Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int. J. Remote Sensing 11: 1405–1420 .

    Google Scholar 

  • Kogan F. (1995). Droughts of the late 1980s in the United States as derived from NOAA Polar-Orbiting Satellite data. Bull. Am. Meteorol. Soc. 76: 655–668 .

    Article  Google Scholar 

  • Kogan F. N. (1998). Global drought watch from space. Bull. Am. Meteorol. Soc. 78: 621–636 .

    Article  Google Scholar 

  • Kogan F. N. (2001). Operational space technology for global vegetation assessment. Remote Sensing Environ. 82: 1949–1964 .

    Google Scholar 

  • Kogan F. N. and Zhu X. (2001). Evolution of long-term errors in NDVI time series: 1985–1999. Adv. Space Res. 28: 149–153 .

    Article  Google Scholar 

  • Kogan F. N. (2004). Derivation of pasture biomass in Mongolia from AVHRR-based vegetation health indices. Int. J. Remote Sensing 25: 2889–2896 .

    Article  Google Scholar 

  • Korzun, V. I., et al.: 1976, World Water Balance and Water Resources of the Earth. UNESCO-USSR Committee for the International Hydrological Decade, 1756 pp.

  • Kozlowski T. T., Kramer P. J. and Pallardy S. G. (1991). The Physiological Ecology of Woody Plants. Academic Press, San Diego .

    Google Scholar 

  • Lana X., Serra C. and Burgueño A. (2001). Patterns of monthly rainfall shortage and excess in terms of the Standardized Precipitation Index for Catalonia (NE Spain). Int. J. Climatol. 21: 1669–1691 .

    Article  Google Scholar 

  • Le Houerou H. N. (1984). Rain use efficiency: a nifying concept in arid-land ecology. J. Arid Environ. 7: 1–12 .

    Google Scholar 

  • Le Houerou H. N. (1996). Climate change, drought and desertification. J. Arid Environ. 34: 133–185 .

    Article  Google Scholar 

  • Lotsch, A., Friedl, M. A., and Anderson, B. T.: 2003, Coupled vegetation-precipitation variability observed from satellite and climate records. Geophysical Research Letters 30, 1774, doi: 10.1029/2003GL017506.

  • Mabbutt J. A. (1985). Desertification of the world’s rangelands. Desertification Control Bull. 12: 1–11 .

    Google Scholar 

  • Malo, A. R. and Nicholson, S. E.: 1990, A study of rainfall and vegetation dynamics in the African Sahel using Normalized Vegetation Index. J. Arid Environ. 19, 1–24.

    Google Scholar 

  • Martí A. (1992). Repercusiones de la irregularidad pluviométrica en los rendimientos de los cereales de secano en los Monegros. ITEA 88: 9–20 .

    Google Scholar 

  • McKee, T. B. N., Doesken, J., and Kleist, J.: 1993, The relationship of drought frecuency and duration to time scales. Eight Conf. On Applied Climatology, Anaheim, CA, Amer. Meteor. Soc. pp. 179–184.

  • McVicar T. R. and Jupp D. L. B. (1998). The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: a review. Agric. Syst. 57: 399–468 .

    Article  Google Scholar 

  • Mitasova H. and Mitas L. (1993). Interpolation by regularized spline with tension. Math. Geol. 25: 641–655 .

    Article  Google Scholar 

  • Navas A. and Machín J. (1998). Spatial analysis of gypsiferous soils in the Zaragoza province (Spain), using GIS as an aid to conservation. Geoderma 87: 57–66 .

    Article  Google Scholar 

  • Nicholson S. E., Davenport M. L. and Malo A. R. (1990). A comparison of the vegetation response to rainfall in the Sahel and east Africa, using normalized difference vegetation index from NOAA-AVHRR. Climatic Change 17: 209–241 .

    Article  Google Scholar 

  • NOAA: 2003, NOAA-14 calibration information as of 31 July 1995 Amendments to NOAA Technical Memorandum 107 Appendix-B for NOAA-J/14. http://noaasis.noaa.gov/NOAASIS/ml/cal14_1.html.

  • Oladipo E. O. (1986). Spatial patterns of drought in the interior plains of North America. J. Climatol. 6: 495–513 .

    Google Scholar 

  • Orwing D. A. and Abrams M. D. (1997). Variation in radial growth responses to drought among species, site and canopy strata. Trees 11: 474–484 .

    Article  Google Scholar 

  • Palmer, W. C.: 1965, Meteorological droughts. U.S. Department of Commerce Weather Bureau Research Paper 45, 58 pp.

  • Pausas, J. G.: 2004, Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Climatic Change 63, 337–350.

    Google Scholar 

  • Pedrocchi, C.: 1998, Ecología de los Monegros, Instituto de Estudios Altoaragoneses, 430 pp.

  • Peña, J. L., Pellicer, F., Julián, A., Chueca, J., Echeverría, M. T., Lozano, M. V., and Sánchez, M.: 2002, Mapa geomorfológico de Aragón. Consejo de Protección de la Naturaleza de Aragón, 54 pp + 3 maps.

  • Peters A. J., Rundquist D. C. and Wilhite D. A. (1991). Satellite detection of the geographic core of the 1988 Nebraska drought. Agric. Forest Meteorol. 57: 35–47 .

    Article  Google Scholar 

  • Pinilla V. (1995). Entre la inercia y el cambio. El sector agrario aragonés: 1850–1935. MAPA, Madrid, 546 .

    Google Scholar 

  • Potter C. S. and Brooks V. (1998). Global analysis of empirical relations between annual climate and seasonality of NDVI. Int. J. Remote Sensing 19: 2921–2948 .

    Article  Google Scholar 

  • Quiring S. M. and Papakryiakou T. N. (2003). An evaluation of agricultural drought indices for the Canadian praires. Agric. Forest Meteorol. 118: 49–62 .

    Article  Google Scholar 

  • Räisänen J., Hansson U. and Ullerstig A. (2004). European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios. Climate Dynamics 22: 13–31 .

    Article  Google Scholar 

  • Rao C. R. N. and Chen J. (1999). Revised post-launch calibration of the visible and near-infrared channels of the advanced very high resolution radiometer on the NOAA-14 spacecraft. Int. J. Remote Sensing 20: 3485–3491 .

    Article  Google Scholar 

  • Rowell D. P. (2005). A scenario of European climate change for the late twenty-first century: seasonal means and interannual variability. Climate Dynamics 25: 837–849 .

    Article  Google Scholar 

  • Sankarasubramanian A. and Srinivasan K. (1999). Investigation and comparison of sampling properties of L-moments and conventional moments. J. Hydrol. 218: 13–34 .

    Article  Google Scholar 

  • Sannier C. A. D. and Taylor J. C. (1998). Real-time vegetation monitoring with NOAA-AVHRR in Southern Africa for wildlife management and food security assessment. Int. J. Remote Sensing 19: 621–639 .

    Article  Google Scholar 

  • Santos P. and Negrín A. J. (1997). A comparison of the Normalized Difference Vegetation Index and rainfall for the Amazon and Notheastern Brazil. J. Climate 36: 958–965 .

    Google Scholar 

  • Schlesinger W. H., Reynolds J. F., Cunningham G. L., Huenneke L. F., Jarrell W. M., Virginia R. A. and Whitford W. G. (1990). Biological feedbacks in global desertification. Science 247: 1043–1048 .

    Article  Google Scholar 

  • Schär, C., Vidale, P. L., Luthi, D., Frei, C., Haberli, C., Liniger, M. A. and Appenzeller, C.: 2004, The role of increasing temperature variability in European summer heat waves. Nature 427, 332–336.

    Google Scholar 

  • Seiler R. A., Kogan F. and Wei G. (2000). Monitoring weather impact and crop yield from NOAA-AVHRR data in Argentina. Adv. Space Res. 26: 1177–1185 .

    Article  Google Scholar 

  • Soulé P. T. (1992). Spatial patterns of drought frequency and duration in the contiguous USA based on multiple drought event definitions. Int. J. Climatol. 12: 11–24 .

    Google Scholar 

  • Å tìpánek, P.: 2004, AnClim – Software for Time Series Analysis (for Windows), Dept. of Geography, Fac. of Natural Sciences, MU, Brno. 1.47 MB. http://www.sci.muni.cz/~pest/.

  • Tanré D., Deroo C. and Duhant P. (1990). Description of a computer code to simulate the satellite signal in the solar spectrum: the 5S code. Int. J. Remote Sensing 11: 659–668 .

    Google Scholar 

  • Teiszen L. L., Reed B. C., Bliss N. B., Wyllie B. K. and Dejong D. D. (1997). NDVI, C3 and C4 production and distribution in Great Plains grassland land cover classes. Ecol. Appl. 7: 59–78 .

    Article  Google Scholar 

  • Toniazzo, T., Gregory, J. M. and Huybrechts, P.: 2004, Climatic impact of a Greenland deglaciation and its possible irreversibility. Journal of Climate 17, 21–33.

    Google Scholar 

  • Tucker C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing Environ. 8: 127–150 .

    Article  Google Scholar 

  • Tucker C. J. and Choudhury B. J. (1987). Satellite remote sensing of drought conditions. Remote Sensing Environ. 23: 243–251 .

    Article  Google Scholar 

  • Tucker C. J., Holben B. N., Elgin J. H. and McMurtrey J. E. (1981). Remote sensing of total dry matter accumulation in winter wheat. Remote Sensing Environ 11: 171–189 .

    Article  Google Scholar 

  • Tucker C. J., Vanpraet C. L., Boerwinkel E. and Gaston A. (1983). Satellite remote sensing of total dry accumulation in the Senegalese sahel. Remote Sensing Environ. 13: 461–474 .

    Article  Google Scholar 

  • Tucker C. J., Newcomb W. W., Los S. O. and Prince S. D. (1991). Mean and inter-year variation of growing-season normalized difference vegetation index for the Sahel. 1981–1989. International Journal of Remote Sensing 16: 1133–1135 .

    Google Scholar 

  • (1979). Map of the World Distribution of Arid Regions. UNESCO, París, 54 .

    Google Scholar 

  • United Kingdom Climate Impacts Programme (UKCIP). http://www.ukcip.org.uk/what_is/what_is.html.

  • Vicente-Serrano S. M. (2005). Las sequías climáticas en el valle medio del Ebro: Factores atmosféricos, evolución temporal y variabilidad espacial. Consejo de Protección de la naturaleza de Aragón, Zaragoza, 277 .

    Google Scholar 

  • Vicente-Serrano, S. M.: 2006a, Differences in spatial patterns of drought on different time scales: an analysis of the Iberian Peninsula. Water Resources Manage., 20 (1), 37–60.

  • Vicente-Serrano S. M. (2006b). Evaluación de las consecuencias ambientales de las sequías en el sector central del valle del Ebro mediante imágenes de satélite: Posibles estrategias de mitigación. Consejo Económico y Social de Aragón, Zaragoza, 303 .

    Google Scholar 

  • Vicente Serrano S. M. and Beguería S. (2003). Estimating extreme dry-spell risk in the middle Ebro valley (Northeastern Spain): a comparative analysis of partial duration series with a General Pareto distribution and Annual maxima series with a Gumbel distribution. Int. J. Climatol. 23: 1103–1118 .

    Article  Google Scholar 

  • Vicente-Serrano S. M., Saz M. A. and Cuadrat J. M. (2003). Comparative analysis of interpolation methods in the middle Ebro valley (Spain): application to annual precipitation and temperature. Climate Res. 24: 161–180 .

    Google Scholar 

  • Vicente-Serrano, S. M., Cuadrat, J. M., González-Hidalgo, J. C., and Romo, A.: 2004, Analysis of the temperature, precipitation and soil moisture influence on natural vegetation productivity in the middle Ebro valley (NE-Spain) using NOAA-AVHRR images. Ecology, Conservation and Management of Mediterranean Type Ecosystems of the World, Millpress, Rotterdam, The Netherlands.

  • Vicente-Serrano S. M., Lasanta T. and Romo A. (2004b). Analysis of the spatial and temporal evolution of vegetation cover in the Spanish central Pyrenees: the role of human management. Environ. Manage. 34: 802–818 .

    Article  Google Scholar 

  • Vicente-Serrano S. M., González-Hidalgo J. C. and Raventós J. (2004c). Spatial and temporal patterns of droughts in the Mediterranean area: the Valencia region (East-Spain). Climate Res. 26: 5–15 .

    Google Scholar 

  • Vicente-Serrano, S. M., Cuadrat, J. M., and Romo, A.: 2006a, Early prediction of crop productions using drought indices at different time scales and remote sensing data: application in the Ebro valley (North-east Spain). Int. J. Remote Sensing 27, 511–518.

  • Vicente-Serrano, S. M., Cuadrat, J. M., and Romo, A. 2006b, Aridity influence on vegetation patterns in the middle Ebro valley (Spain): evaluation by means of AVHRR images and climate interpolation techniques. J. Arid Environ., doi:10.1016/j.jaridenv.2005.10.021.

  • Walsh S. J. (1987). Comparison of NOAA-AVHRR data to meteorological drought indices. Photogrammet. Eng. Remote Sensing 53: 1069–1074 .

    Google Scholar 

  • Wannebo A. and Rosenzweig C. (2003). Remote sensing of US cornbelt areas sensitive to the El Niño-Southern Oscillation. Int. J. Remote Sensing 24: 2055–2067 .

    Article  Google Scholar 

  • Wang J., Price K. P. and Rich P. M. (2001). Spatial patterns of NDVI response to precipitation and temperature in the central Great Plains. Int. J. Remote Sensing 22: 3827–3844 .

    Article  Google Scholar 

  • Wang J., Rich P. M. and Price K. P. (2003). Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int. J. Remote Sensing 24: 2345–2364 .

    Article  Google Scholar 

  • Wilhelmi O. V. and Wilhite D. A. (2002). Assessing vulnerability to agricultural drought: a Nebraska case study. Natural Hazards 25: 37–58 .

    Article  Google Scholar 

  • Wilhelmi O. V., Hubbard K. G. and Wilhite D. A. (2002). Spatial representation of agroclimatology in a study of agricultural drought. Int. J. Climatol. 22: 1399–1414 .

    Article  Google Scholar 

  • Wilhite D. A. and Glantz M. H. (1985). Understanding the drought phenomenon: the role of definitions. Water Int. 10: 111–120 .

    Article  Google Scholar 

  • Woods Hole Oceanographic Institution; Ocean and Climate Change Institute. http://www.whoi.edu/institutes/occi/index.htm .

  • Wu H. and Wilhite D. A. (2004). An operational agricultural drought risk assessment model for Nebraska, USA. Natural Hazards 33: 1–21 .

    Article  Google Scholar 

  • Wu H., Hubbard K. G. and Wilhite D. A. (2004). An agricultural drought risk-assessment model for corn and soybeans. Int. J. Climatol. 24: 723–741.

    Article  Google Scholar 

  • Wu H., Hayes M. J., Wilhite D. A. and Svoboda M. D. (2005). The effect of the length of record on the standardized precipitation index calculation. Int. J. Climatol. 25: 505–520 .

    Article  Google Scholar 

  • Wylie B. K., Meyer D. J., Tieszen L. L. and Mannel S. (2002). Satellite mapping of surface biophysical parameters at the biome scale over the north American grasslands. A case study. Remote Sensing Environ. 79: 266–278.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio M. Vicente-Serrano.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vicente-Serrano, S.M. Evaluating the Impact of Drought Using Remote Sensing in a Mediterranean, Semi-arid Region. Nat Hazards 40, 173–208 (2007). https://doi.org/10.1007/s11069-006-0009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-006-0009-7

Keywords

  • AVHRR
  • drought
  • Ebro River valley
  • Mediterranean region
  • NDVI
  • semi-arid
  • Spain
  • standardized precipitation index