Natural Hazards

, Volume 40, Issue 1, pp 113–136 | Cite as

Validating a Tsunami Vulnerability Assessment Model (the PTVA Model) Using Field Data from the 2004 Indian Ocean Tsunami



The “PTVAM” tsunami vulnerability assessment model [Papathoma and Dominey-Howes: 2003, Nat. Hazards Earth Syst. Sci. 3, 733–744; Papathoma et al.: 2003, Nat. Hazards Earth Syst. Sci. 3, 377–389], like all models, requires validation. We use the results from post-tsunami surveys in the Maldives following the December 26, 2004 Indian Ocean tsunami to ‘evaluate’ the appropriateness of the PTVAM attributes to understanding spatial and temporal vulnerability to tsunami damage and loss. We find that some of the PTVAM attributes are significantly important and others moderately important to understanding and assessing vulnerability. Some attributes require further investigation. Based upon the ground-truth data, we make several modifications to the model framework and propose a revised version of the PTVAM (PTVAM 2).


tsunami vulnerability assessment model validation Maldives 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, D.: 2000, Confronting catastrophe: new perspectives on natural disasters. Terra Publishing, 282 pp.Google Scholar
  2. Chang N.-B., Wei Y. L., Tseng C. C. and Kao C.-Y. J. (1997). The design of a GIS based decision support system for chemical emergency preparedness and response in an urban environment. Comput. Environ. Urban Syst. 21(1): 67–94CrossRefGoogle Scholar
  3. Cheung K. F., Phadke A. C., Wei Y., Rojas R., Douyere Y., Martino C. D., Houston S. H., Liu P., Lynett P. J., Dodd N., Liao S. and Nakazaki E. (2003). Modelling of storm induced coastal flooding for emergency management. Ocean Eng. 30: 1353–1386CrossRefGoogle Scholar
  4. Contini S., Bellezza F., Christou M. and Kirchsteiger C. (2000). The use of geographic information systems in major accident risk assessment and management. J. Hazard. Mater. 78: 223–245CrossRefGoogle Scholar
  5. Esogbue A. (1996). Fuzzy sets modelling and optimization for disaster control systems planning. Fuzzy Sets Syst. 81: 169–183CrossRefGoogle Scholar
  6. Fischer T., Alvarez M., Dela Llera J. and Riddell R. (2002). An integrated model for earthquake risk assessment of buildings. Eng. Struct. 24: 979–998CrossRefGoogle Scholar
  7. Gambolati G., Teatini P. and Gonella M. (2002). GIS simulations of the inundation risk in the coastal lowlands of the northern Adriatic Sea. Mathem. Comput. Model. 35: 963–972CrossRefGoogle Scholar
  8. Jenkins L. (2000). Selecting scenarios for environmental disaster planning. Eur. J. Oper. Res. 121: 275–286CrossRefGoogle Scholar
  9. Papathoma, M. 2003. Assessing tsunami vulnerability using GIS with special reference to Greece. Unpublished PhD thesis, Coventry University (UK), 290 ppGoogle Scholar
  10. Papathoma M. and Dominey-Howes D. (2003). Tsunami vulnerability assessment and its implications for coastal hazard analysis and disaster management planning, Gulf of Corinth, Greece. Nat. Hazards Earth Syst. Sci. 3(6): 733–744Google Scholar
  11. Papathoma M., Dominey-Howes D., Zong Y. and Smith D. (2003). Assessing tsunami vulnerability, an example from Heraklion, Crete. Nat. Hazards Earth Syst. Sci. 3: 377–389CrossRefGoogle Scholar
  12. Pearson H. (2005). Scientists seek action to fix Asia’s ravaged ecosystems. Nature 433: 94CrossRefGoogle Scholar
  13. Peters J. and Hall G. (1999). Assessment of ambulance response performance using a geographic information system. Soc. Sci. Med. 49: 1551–1566CrossRefGoogle Scholar
  14. Pidd M. and Eglese R. W. (1996). A simulation model for emergency evacuation. Eur. J. Oper. Res. 90: 413–419CrossRefGoogle Scholar
  15. Tufekci S. (1995). An integrated emergency management decision support system for hurricane emergencies. Saf. Sci. 20: 39–48CrossRefGoogle Scholar
  16. Williams N. (2005). Tsunami insight to mangrove value. Curr. Biol. 15(3): R73CrossRefGoogle Scholar
  17. Wisner, B., Blaikie, P., Cannon, T. and Davis, I.: 2004, At risk: natural hazards, people’s vulnerability and disasters. Routledge, 2nd edn, 284 pp. [accessed 11th May 2005.]
  18. Zerger A., Smith D., Hunter G. and Jones S. (2002). Riding the storm: a comparison of uncertainty modelling techniques for storm surge risk management. Appl. Geogr. 22: 307–330CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Physical GeographyRisk Frontiers, Macquarie UniversitySydneyAustralia
  2. 2.Department of Photogrammetry and Remote SensingUniversity of TechnologyViennaAustria

Personalised recommendations