Skip to main content

Probabilistic Analysis of Tsunami Hazards*

Abstract

Determining the likelihood of a disaster is a key component of any comprehensive hazard assessment. This is particularly true for tsunamis, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models. We discuss probabilistic tsunami hazard analysis (PTHA) from the standpoint of integrating computational methods with empirical analysis of past tsunami runup. PTHA is derived from probabilistic seismic hazard analysis (PSHA), with the main difference being that PTHA must account for far-field sources. The computational methods rely on numerical tsunami propagation models rather than empirical attenuation relationships as in PSHA in determining ground motions. Because a number of source parameters affect local tsunami runup height, PTHA can become complex and computationally intensive. Empirical analysis can function in one of two ways, depending on the length and completeness of the tsunami catalog. For site-specific studies where there is sufficient tsunami runup data available, hazard curves can primarily be derived from empirical analysis, with computational methods used to highlight deficiencies in the tsunami catalog. For region-wide analyses and sites where there are little to no tsunami data, a computationally based method such as Monte Carlo simulation is the primary method to establish tsunami hazards. Two case studies that describe how computational and empirical methods can be integrated are presented for Acapulco, Mexico (site-specific) and the U.S. Pacific Northwest coastline (region-wide analysis).

This is a preview of subscription content, access via your institution.

References

  1. Abe, K.: 1995. Estimate of tsunami run-up heights from earthquake magnitudes, Tsunami: Progress in Prediction, Disaster Prevention and Warning. In Y. Tsuchiya & N. Shuto (Eds.), 21–35: Kluwer Academic Publishers.

  2. R. E. Abercrombie (1995) ArticleTitleEarthquake source scaling relationships from −1 to 5 ML, using seismograms recorded at 2.5 km depth J. Geophys. Res. 100 24015–24036

    Google Scholar 

  3. J. Adams (1990) ArticleTitlePaleoseismicity of the Cascadia subduction zone: evidence from turbidites off the Oregon-Washington margin Tectonics 9 569–583

    Google Scholar 

  4. J. G. Anderson J. N. Brune (1999) ArticleTitleProbabilistic seismic hazard analysis without the ergodic assumption Seismol. Res. Lett. 70 19–28

    Google Scholar 

  5. J. G. Anderson J. N. Brune R. Anooshehpoor S. D. Ni (2000) ArticleTitleNew ground motion data and concepts in seismic hazard analysis Curr. Sci. 79 1278–1290

    Google Scholar 

  6. Atwater, B. F. and Hemphill-Haley, E.: 1997, Recurrence intervals for great earthquakes of the past 3,500 years at northeastern Willapa Bay, Washington. Professional Paper 1576, U.S. Geological Survey, 108 pp

  7. A. M. Baptista G. R. Priest T. S. Murty (1993) ArticleTitleField survey of the 1992 Nicaragua tsunami Mar. Geodesy 16 169–203

    Google Scholar 

  8. A. Ben-Menahem M. Rosenman (1972) ArticleTitleAmplitude patterns of tsunami waves from submarine earthquakes J. Geophys. Res. 77 3097–3128

    Google Scholar 

  9. S. L. Bilek T. Lay (1999) ArticleTitleRigidity variations with depth along interplate megathrust faults in subduction zones Nature 400 443–446 Occurrence Handle10.1038/22739

    Article  Google Scholar 

  10. Bilek, S. L. and Lay, T.: 2000, Depth dependent rupture properties in circum-Pacific subduction zones, In: J. B. Rundle, D. L. Turcotte and W. Klein (eds), GeoComplexity and the Physics of Earthquakes, American Geophysical Union, pp. 165–186

  11. K. W. Birkeland C. C. Landry (2002) ArticleTitlePower-laws and snow avalanches Geophys. Res. Lett. 29 49-1–49-3 Occurrence Handle10.1029/2001GL014623

    Article  Google Scholar 

  12. K. Bogen (1994) ArticleTitleA note on compounded conservatism Risk Anal. 14 379–381

    Google Scholar 

  13. D. M. Boore W. B. Joyner T. E. Fumal (1997) ArticleTitleEquations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: a summary of recent work Seismol. Res. Lett. 68 128–153

    Google Scholar 

  14. Borrero, J. C.: 2001, Changing field data gives better model results: an example from Papua New Guinea. International Tsunami Symposium 2001, Seattle, Washington, pp. 397–405

  15. J. C. Borrero M. Ortiz V. V. Titov C. E. Synolakis (1997) ArticleTitleField survey of Mexican tsunami produces new data, unusual photos Eos Trans. Am. Geophys. Union 78 85–88

    Google Scholar 

  16. S. M. Burroughs S. F. Tebbens (2001) ArticleTitleUpper-truncated power laws in natural systems Pure Appl. Geophys. 158 741–757

    Google Scholar 

  17. S. M. Burroughs S. F. Tebbens (2005) ArticleTitlePower law scaling and probabilistic forecasting of tsunami runup heights Pure Appl. Geophys. 162 331–342 Occurrence Handle10.1007/s00024-004-2603-5

    Article  Google Scholar 

  18. R. P. Comer (1980) ArticleTitleTsunami height and earthquake magnitude: theoretical basis of an empirical relation Geophys. Res. Lett. 7 445–448

    Google Scholar 

  19. Coppersmith, K. J. and Youngs, R. R.: 1986, Capturing uncertainty in probabilistic seismic hazard assessments within intraplate tectonic environments, Proceedings of the Third U.S. National Conference on Earthquake Engineering, Charleston, South Carolina, pp. 301–312

  20. C. A. Cornell (1968) ArticleTitleEngineering seismic risk analysis Bull. Seismol. Soc. Am. 58 1583–1606

    Google Scholar 

  21. C. H. Cramer M. D. Petersen M. S. Reichle (1996) ArticleTitleA Monte Carlo approach in estimating uncertainty for a seismic hazard assessment of Los Angeles, Ventura, and Orange counties, California Bull. Seismol. Soc. Am. 86 1681–1691

    Google Scholar 

  22. Crawford, P. L.: 1987, Tsunami predictions for the coast of Alaska: Kodiak Island to Ketchikan. Technical Report CERC-87-7, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, 137 pp

  23. H. R. DeShon S. Y. Schwartz S. L. Bilek L. M. Dorman V. Gonzalez J. M. Protti E. Flueh T. H. Dixon (2003) ArticleTitleSeismogenic zone structure of the southern Middle America Trench, Costa Rica J. Geophys. Res. 108 12–14 Occurrence Handle10.1029/2002JB002294

    Article  Google Scholar 

  24. Downes, G. L. and Stirling, M. W.: 2001, Groundwork for development of a probabilistic tsunami hazard model for New Zealand, International Tsunami Symposium 2001, Seattle, Washington, pp. 293–301

  25. A. M. Dziewonski D. L. Anderson (1981) ArticleTitlePreliminary reference Earth model Phys. Earth Planet. Interiors 25 297–356 Occurrence Handle10.1016/0031-9201(81)90046-7

    Article  Google Scholar 

  26. J. E. Ebel A. L. Kafka (1999) ArticleTitleA Monte Carlo approach to seismic hazard analysis Bull. Seismol. Soc. Am. 89 854–866

    Google Scholar 

  27. E. H. Field D. D. Jackson J. F. Dolan (1999) ArticleTitleA mutually consistent seismic-hazard source model for southern California Bull. Seismol. Soc. Am. 89 559–578

    Google Scholar 

  28. Frankel, A. D., Mueller, C. S., Barnhard, T., Perkins, D. M., Leyendecker, E. V., Dickman, N., Hanson S., and Hopper, M.: 1996, National seismic-hazard maps: Documentation June 1996. Open-File Report 96-532, U.S. Geological Survey, 41 pp

  29. Frankel, A. D., Petersen, M. D., Mueller, C. S., Haller, K. M., Wheeler, R. L., Leyendecke, E. V., Wesson, R. L., Harmsen, S. C., Cramer, C. H., Perkins, D. M., and Rukstales, K. S.: 2002, Documentation for the 2002 Update of the National Seismic Hazard Maps. Open-File Report 02-420, U.S. Geological Survey, 33 pp

  30. Garcia, A. W. and Houston, J. R.: 1975, Type 16 Flood Insurance Study: Tsunami Predictions for Monterey and San Francisco Bays and Puget Sound. Technical Report H-75-17, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, 263 pp

  31. E. L. Geist (1999) ArticleTitleLocal tsunamis and earthquake source parameters Adv. Geophys. 39 117–209

    Google Scholar 

  32. Geist, E. L.: 2002, Complex earthquake rupture and local tsunamis, J. Geophys. Res. 107, ESE 2-1–ESE 2-16

  33. Geist, E. L., 2005: Local Tsunami Hazards in the Pacific Northwest from Cascadia Subduction Zone Earthquakes. U.S. Geological Survey Professional Paper 1661-B, 17 pp

  34. E. L. Geist R. Dmowska (1999) ArticleTitleLocal tsunamis and distributed slip at the source Pure Appl. Geophys. 154 485–512 Occurrence Handle10.1007/s000240050241

    Article  Google Scholar 

  35. E. L. Geist S. L. Bilek (2001) ArticleTitleEffect of depth-dependent shear modulus on tsunami generation along subduction zones Geophys. Res. Lett. 28 1315–1318 Occurrence Handle10.1029/2000GL012385

    Article  Google Scholar 

  36. R. J. Geller (1976) ArticleTitleScaling relations for earthquake source parameters and magnitudesa Bull. Seismol. Soc. Am. 66 1501–1523

    Google Scholar 

  37. C. Goldfinger C. H. Nelson J. E. Johnson InstitutionalAuthorNameThe Shipboard Scientific Party (2003) ArticleTitleHolocene earthquake records from the Cascadia subduction zone and northern San Andreas fault based on precise dating of offshore turbidites Annu. Rev. Earth Planet. Sci. 31 555–577 Occurrence Handle10.1146/annurev.earth.31.100901.141246

    Article  Google Scholar 

  38. F. I. González K. Satake E. F. Boss H. O. Mofjeld (1995) ArticleTitleEdge wave and non-trapped modes of the 25 April 1992 Cape Mendocino tsunami Pure Appl. Geophys. 144 409–426 Occurrence Handle10.1007/BF00874375

    Article  Google Scholar 

  39. S. C. Harmsen A. D. Frankel (2001) ArticleTitleGeographic deaggregation of seismic hazard in the United States Bull. Seismol. Soc. Am. 91 13–26

    Google Scholar 

  40. R. Hino Y. Tanioka T. Kanazawa S. Sakai M. Nishino K. Suyehiro (2001) ArticleTitleMicro-tsunami from a local interplate earthquake detected by cabled offshore tsunami observation in northeastern Japan Geophys. Res. Lett. 28 3533–3536 Occurrence Handle10.1029/2001GL013297

    Article  Google Scholar 

  41. K. Hirata H. Takahashi E. L. Geist K. Satake Y. Tanioka H. Sugioka H. Mikada (2003) ArticleTitleSource depth dependence of micro-tsunamis recorded with ocean-bottom pressure gauges; the January 28, 2000 Mw 6.8 earthquake off Nemuro Peninsula, Japan Earth Planet. Sci. Lett. 208 305–318 Occurrence Handle10.1016/S0012-821X(03)00040-2

    Article  Google Scholar 

  42. Horikawa, K. and Shuto, N.: 1983, Tsunami disasters and protection measures in Japan, In: K. Iida and T. Iwasaki (eds), Tsunamis-Their Science and Engineering, Terra Scientific Publishing Company, pp. 9–22

  43. Houston, J. R.: 1980, Type 19 Flood Insurance Study, Tsunami Predictions for Southern California. Technical Report HL-80-18, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS

  44. Houston, J. R., Carver, R. D. and Markle, D. G.: 1977, Tsunami-wave elevation frequency of occurrence for the Hawaiian Islands. Technical Report H-77-16, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, 66 pp

  45. R. D. Hyndman K. Wang (1994) ArticleTitleThe rupture zone of Cascadia great earthquakes from current deformation and the thermal regime J. Geophys. Res 100 22133–22154

    Google Scholar 

  46. K. Iida D. C. Cox G. Pararas-Carayannis (1967) Preliminary catalog of tsunamis occurring in the Pacific Ocean. HIG 67-10 Hawaii Institute of Geophysics, University of Hawaii Honolulu 131

    Google Scholar 

  47. F. Imamura N. Shuto S. Ide Y. Yoshida K. Abe (1993) ArticleTitleEstimate of the tsunami source of the 1992 Nicaraguan earthquake from tsunami data Geophys. Res. Lett. 20 1515–1518

    Google Scholar 

  48. K. Ito M. Matsuzaki (1990) ArticleTitleEarthquakes and self-organized critical phenomena J. Geophys. Res. 95 6853–6860

    Google Scholar 

  49. Y. Y. Kagan (1997) ArticleTitleSeismic moment-frequency relation for shallow earthquakes: regional comparison J. Geophys. Res. 102 2835–2852 Occurrence Handle10.1029/96JB03386

    Article  Google Scholar 

  50. Y. Y. Kagan (1999) ArticleTitleUniversality of the seismic-moment–frequency relation Pure Appl. Geophys. 155 537–573

    Google Scholar 

  51. Y. Y. Kagan (2002a) ArticleTitleSeismic moment distribution revisited: II. Moment conservation principle Geophys. J. Int. 149 731–754 Occurrence Handle10.1046/j.1365-246X.2002.01671.x

    Article  Google Scholar 

  52. Y. Y. Kagan (2002b) ArticleTitleSeismic moment distribution revisited: I. Statistical Results Geophys. J. Int. 148 520–541 Occurrence Handle10.1046/j.1365-246x.2002.01594.x

    Article  Google Scholar 

  53. Y. Y. Kagan D. D. Jackson (1995) ArticleTitleNew seismic gap hypothesis: five years after J. Geophys. Res. 100 3943–3959

    Google Scholar 

  54. Y. Y. Kagan D. D. Jackson (2000) ArticleTitleProbabilistic forecasting of earthquakes Geophys. J. Int. 143 438–453

    Google Scholar 

  55. K. Kajiura (1963) ArticleTitleThe leading wave of a tsunami Bull. Earthquake Res. Inst. 41 535–571

    Google Scholar 

  56. K. Kajiura (1981) ArticleTitleTsunami energy in relation to parameters of the earthquake fault model Bull. Earthquake Res. Inst. 56 415–440

    Google Scholar 

  57. H. Kanamori D. L. Anderson (1975) ArticleTitleTheoretical basis of some empirical relations in seismology Bull. Seismol. Soc. Am. 65 1073–1095

    Google Scholar 

  58. Kockelman, W. J.: 1989, Reducing earthquake hazards in Oregon and Washington: an introduction to the five components necessary for effective hazard reduction. Open-File Report 89-465, U. S. Geological Survey, 190–212 pp

  59. I. Lin C. C. Tung (1982) ArticleTitleA preliminary investigation of tsunami hazard Bull. Seismol. Soc. Am. 72 2323–2337

    Google Scholar 

  60. B. D. Malamud D. L. Turcotte C. C. Barton (1996) ArticleTitleThe 1993 Mississippi River Flood: a one hundred or a one thousand year event? Environ. Eng. Geosci. 2 479–486

    Google Scholar 

  61. B. D. Malamud D. L. Turcotte F. Guzzetti P. Reichenbach (2004) ArticleTitleLandslide inventories and their statistical properties Earth Surface Proc. Landforms 29 687–7111

    Google Scholar 

  62. M. Matsuyama J. P. Walsh H. Yeh (1999) ArticleTitleThe effect of bathymetry on tsunami characteristics at Sissano Lagoon, Papua New Guinea Geophys. Res. Lett. 26 3513–3516 Occurrence Handle10.1029/1999GL005412

    Article  Google Scholar 

  63. S. A. Miller (2002) ArticleTitleEarthquake scaling and the strength of seismogenic faults Geophys. Res. Lett. 29 27–1–27–4 Occurrence Handle10.1029/2001GL014181

    Article  Google Scholar 

  64. H. O. Mofjeld M. G. G. Foreman A. Ruffman (1997) ArticleTitleWest Coast tides during Cascadia subduction zone tsunamis Geophys. Res. Lett. 24 2215–2218 Occurrence Handle10.1029/97GL02060

    Article  Google Scholar 

  65. InstitutionalAuthorNameNational Research Council (NRC) (1988) Probabilistic Seismic Hazard Analysis National Academy Press Washington, DC 97

    Google Scholar 

  66. InstitutionalAuthorNameNational Research Council (NRC) (1997) Review of Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts National Academy Press Washington, DC 73

    Google Scholar 

  67. M. Ortiz V. Kostoglodov S. K. Singh J. F. Pacheco (2000) ArticleTitleNew constraints on the uplift of October 9, 1995 Jalisco-Colima earthquake (Mw 8) based on the analysis of tsunami records at Manzanillo and Navidad, Mexico Geofisica Int. 39 349–357

    Google Scholar 

  68. J. F. Pacheco C. H. Scholz L. R. Sykes (1992) ArticleTitleChanges in frequency-size relationship from small to large earthquakes Nature 355 71–73 Occurrence Handle10.1038/355071a0

    Article  Google Scholar 

  69. T. Parsons A. M. Trehu J. H. Luetgert K. Miller F. Kilbride R. E. Wells M. A. Fisher E. Flueh U. S. ten Brink N. I. Christensen (1998) ArticleTitleA new view into the Cascadia subduction zone and volcanic arc: implications for earthquake hazards along the Washington margin Geology 26 199–202 Occurrence Handle10.1130/0091-7613(1998)026<0199:ANVITC>2.3.CO;2

    Article  Google Scholar 

  70. A. M. Pelayo D. A. Wiens (1992) ArticleTitleTsunami earthquakes: slow thrust-faulting events in the accretionary wedge J. Geophys. Res. 97 15321–15337

    Google Scholar 

  71. M. D. Petersen C. H. Cramer A. D. Frankel (2002) ArticleTitleSimulations of seismic hazard for the Pacific Northwest of the United States from earthquakes associated with the Cascadia subduction zone Pure Appl. Geophys. 159 2147–2168 Occurrence Handle10.1007/s00024-002-8728-5

    Article  Google Scholar 

  72. V. F. Pisarenko D. Sornette (2004) ArticleTitleStatistical detection and characterization of a deviation from the Gutenberg–Richter distribution above magnitude 8 Pure Appl. Geophys. 161 839–864 Occurrence Handle10.1007/s00024-003-2475-0

    Article  Google Scholar 

  73. J. Polet H. Kanamori (2000) ArticleTitleShallow subduction zone earthquakes and their tsunamigenic potential Geophys. J. Int. 142 684–702 Occurrence Handle10.1046/j.1365-246x.2000.00205.x

    Article  Google Scholar 

  74. A. B. Rabinovich (1997) ArticleTitleSpectral analysis of tsunami waves: separation of source and topography effects J. Geophys. Res. 102 12663–12676 Occurrence Handle10.1029/97JC00479

    Article  Google Scholar 

  75. T. Rikitake I. Aida (1988) ArticleTitleTsunami hazard probability in Japan Bull. Seismol. Soc. Am. 78 1268–1278

    Google Scholar 

  76. B. Romanowicz J. B. Rundle (1993) ArticleTitleOn scaling relationships for large earthquakes Bull. Seismol. Soc. America 83 1294–1297

    Google Scholar 

  77. Rong, Y., Jackson, D. D. and Kagan, Y. Y.: 2003, Seismic gaps and earthquakes, J. Geophys. Res. 108, ESE 6–1 −6–14

    Google Scholar 

  78. Rubinstein, R. Y.: 1981, Simulation and the Monte Carlo Method, Wiley, 278 pp

  79. J. B. Rundle (1989) ArticleTitleDerivation of the complete Gutenberg–Richter magnitude-frequency relation using the principle of scale invariance J. Geophys. Res. 94 12337–12342

    Google Scholar 

  80. A. J. Sanchez S. F. Farreras (1993) Catalog of tsunamis on the western coast of Mexico. World Data Center A for Solid Earth Geophysics Publication SE-50 National Geophysical Data Center Boulder, Colorado 79

    Google Scholar 

  81. Satake, K.: 2002, Tsunamis. In: W. H. K. Lee, H. Kanamori, P. C. Jennings and C. Kisslinger (eds), International Handbook of Earthquake and Engineering Seismology, International Association of Seismology and Physics of the Earth’s Interior, pp. 437–451

  82. Satake, K., Wang, K., and Atwater, B.F.: 2003, Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions, J. Geophys. Res. 108, ESE 7-1–7-17

    Google Scholar 

  83. J. C. Savage (1991) ArticleTitleCriticism of some forecasts of the National Earthquake Prediction Evaluation Council Bull. Seismol. Soc. Am. 81 862–881

    Google Scholar 

  84. J. C. Savage (1992) ArticleTitleThe uncertainty in earthquake conditional probabilities Geophys. Res. Lett. 19 709–712

    Google Scholar 

  85. C. H. Scholz (1982) ArticleTitleScaling laws for large earthquakes: consequences for physical models Bull. Seismol. Soc. Am. 72 1–14

    Google Scholar 

  86. S. Y. Schwartz (1999) ArticleTitleNoncharacteristic behavior and complex recurrence of large subduction zone earthquakes J. Geophys. Res 104 23111–23125 Occurrence Handle10.1029/1999JB900226

    Article  Google Scholar 

  87. Senior Seismic Hazard Analysis Committee (SSHAC): 1997, Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. Main Report NUREG/CR-6372 UCRL-ID-122160 Vol. 1, U.S. Nuclear Regulatory Commission, 256 pp

  88. B. E. Shaw C. H. Scholz (2001) ArticleTitleSlip-length scaling in large earthquakes: observations and theory and implications for earthquake physics Geophys. Res. Lett. 28 2995–2998 Occurrence Handle10.1029/2000GL012762

    Article  Google Scholar 

  89. N. Shuto (1991) ArticleTitleNumerical simulation of tsunamis – its present and near future Nat. Hazards 4 171–191 Occurrence Handle10.1007/BF00162786

    Article  Google Scholar 

  90. S. K. Singh M. Rodriguez L. Esteva (1983) ArticleTitleStatistics of small earthquake and frequency of occurrence of large earthquakes along the Mexican subduction zone Bull. Seismol. Soc. Am. 73 1779–1796

    Google Scholar 

  91. Soloviev, S. L.: 1969, Recurrence of tsunamis in the Pacific. In: W. M. Adams (ed.), Tsunamis in the Pacific Ocean, East-West Center Press, pp. 149–163

  92. Soloviev, S. L. and Go, Ch. N.: 1984: Catalog of tsunamis on the eastern shore of the Pacific Ocean. Canadian Translation of Fisheries and Aquatic Sciences No. 5078, Canada Insitute for Scientific and Technical Information, Ontario, Canada, 285 pp

  93. P. Somerville K. Irikura R. Graves S. Sawada D. Wald N. A. Abrahamson Y. Iwasaki T. Kagawa N. Smith A. Kowada (1999) ArticleTitleCharacterizing crustal earthquake slip models for the prediction of strong ground motion Seismol. Res. Lett. 70 59–80

    Google Scholar 

  94. D. Sornette J. Virieux (1992) ArticleTitleLinking short-timescale deformation to long-timescale tectonics Nature 357 401–404 Occurrence Handle10.1038/357401a0

    Article  Google Scholar 

  95. G. Suárez O. Sánchez (1996) ArticleTitleShallow depth of seismogenic coupling in southern Mexico: implications for the maximum size of earthquakes in the subduction zone Phys. Earth Planet. Int. 93 53–61

    Google Scholar 

  96. G. Suárez T. Monfret G. Wittlinger C. David (1990) ArticleTitleGeometry of subduction and depth of the seismogenic zone in the Guerrero gap, Mexico Nature 345 336–338 Occurrence Handle10.1038/345336a0

    Article  Google Scholar 

  97. S. Tadepalli C. E. Synolakis (1996) ArticleTitleModel for the leading waves of tsunamis Phys. Rev. Lett. 77 2141–2144 Occurrence Handle10.1103/PhysRevLett.77.2141

    Article  Google Scholar 

  98. Y. Tanioka K. Satake (1996) ArticleTitleTsunami generation by horizontal displacement of ocean bottom Geophys. Res. Lett. 23 861–865

    Google Scholar 

  99. B. W. Tichelaar L. J. Ruff (1993) ArticleTitleDepth of seismic coupling along subduction zones J. Geophys. Res. 98 2017–2037

    Google Scholar 

  100. S. Tinti A. Armigliato (2003) ArticleTitleThe use of scnarios to evaluate the tsunami impact in southern Italy Mar. Geology 199 221–243

    Google Scholar 

  101. V. V. Titov C. E. Synolakis (1997) ArticleTitleExtreme inundation flows during the Hokkaido-Nansei-Oki tsunami Geophys. Res. Lett. 24 1315–1318 Occurrence Handle10.1029/97GL01128

    Article  Google Scholar 

  102. G. R. Toro N. A. Abrahamson J. F. Schneider (1997) ArticleTitleModel of strong ground motions from earthquakes in central and eastern North America: best estimates and uncertainties Seismol. Res. Lett. 68 41–57

    Google Scholar 

  103. U.S. Interagency Advisory Committee on Water Data: 1982, Guidelines for determining flood flow frequency. Bulletin 17-B of the Hydrology Subcommittee, U.S. Geological Survey, Office of Water Data Coordination, Reston, Virginia, 183 pp

  104. C. M. Valdes W. D. Mooney S. K. Singh R. P. Meyer C. Lomnitz J. H. Luetgert C. E. Helsley B. T. R. Lewis M. Mena (1986) ArticleTitleCrustal structure of Oaxaca, Mexico, from seismic refraction measurements Bull. Seismol. Soc. Am. 76 547–563

    Google Scholar 

  105. D. Vere-Jones R. Robinson W. Yang (2001) ArticleTitleRemarks on the accelerated moment release model: problems of model formulation, simulation and estimation Geophys. J. Int. 144 517–531 Occurrence Handle10.1046/j.1365-246x.2001.01348.x

    Article  Google Scholar 

  106. S. N. Ward (1980) ArticleTitleRelationships of tsunami generation and an earthquake source J. Phys. Earth 28 441–474

    Google Scholar 

  107. S. N. Ward (1982) ArticleTitleOn tsunami nucleation II. An instantaneous modulated line source Phys. Earth Planet. Int. 27 273–285

    Google Scholar 

  108. S. N. Ward (1991) ArticleTitleA synthetic seismicity model for the Middle America trench J. Geophys. Res. 96 21433–21442

    Google Scholar 

  109. S. N. Ward (1992) ArticleTitleAn application of synthetic seismicity in earthquake statistics: The Middle America trench J. Geophys. Res. 97 6675–6682

    Google Scholar 

  110. S. N. Ward (1994) ArticleTitleA multidisciplinary approach to seismic hazard in southern California Bull. Seismol. Soc. Am. 84 1293–1309

    Google Scholar 

  111. S. N. Ward (1996) ArticleTitleA synthetic seismicity model for southern California: cycles, probabilities and hazards J. Geophys. Res. 101 22393–22418

    Google Scholar 

  112. S. N. Ward (2000) ArticleTitleSan Francisco Bay area earthquake simulations: a step toward a standard physical earthquake model Bull. Seismol. Soc. Am. 90 370–386 Occurrence Handle10.1785/0119990026

    Article  Google Scholar 

  113. S. N. Ward (2001) ArticleTitleLandslide tsunami J. Geophys. Res. 106 11201–11215 Occurrence Handle10.1029/2000JB900450

    Article  Google Scholar 

  114. Ward, S. N.: 2002, Tsunamis, In: R. A. Meyers (ed.), The Encyclopedia of Physical Science and Technology, Academic Press, pp. 175–191

  115. S. N. Ward E. Asphaug (2000) ArticleTitleAsteroid impact tsunami: a probabilistic hazard assessment Icarus 145 64–78 Occurrence Handle10.1006/icar.1999.6336

    Article  Google Scholar 

  116. D. L. Wells K. J. Coppersmith (1994) ArticleTitleNew empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement Bull. Seismol. Soc. Am. 84 974–1002

    Google Scholar 

  117. S. G. Wesnousky (1994) ArticleTitleThe Gutenberg–Richter or characteristic earthquake distribution, which is it? Bull. Seismol. Soc. Am. 84 1940–1959

    Google Scholar 

  118. P. Wessel W. H. F. Smith (1995) ArticleTitleNew version of the Generic Mapping Tools released Eos Trans. Am. Geophys. Union 76 F329

    Google Scholar 

  119. M. Wyss (1979) ArticleTitleEstimating maximum expectable magnitude of earthquake from fault dimensions Geology 6 336–340

    Google Scholar 

  120. R. R. Youngs W. J. Arabasz R. E. Anderson A. R. Ramelli J. P. Ake D. B. Slemmons J. P. McCalpin D. I. Doser C. J. Fridrich F. H. Swan SuffixIII A. Rogers J. C. Yount L. W. Anderson K. D. Smith R. L. Bruhn P. L. K. Knuepfer R. B. Smith C. M. dePolo D. W. O’Leary K. J. Coppersmith S. K. Pezzopane D. P. Schwartz J. W. Whitney S. S. Olig G. R. Toro (2003) ArticleTitleA methodology for probabilistic fault displacement hazard analysis (PFDHA) Earthquake Spectra 19 191–219 Occurrence Handle10.1193/1.1542891

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eric L. Geist.

Additional information

* The U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Geist, E.L., Parsons, T. Probabilistic Analysis of Tsunami Hazards*. Nat Hazards 37, 277–314 (2006). https://doi.org/10.1007/s11069-005-4646-z

Download citation

Keywords

  • tsunami
  • probabilistic hazard analysis
  • seismic hazard analysis
  • Monte Carlo
  • tide gauge
  • empirical
  • power-law