Advertisement

Brain Cell Biology

, 36:3 | Cite as

Real-time monitoring of cyclic nucleotide signaling in neurons using genetically encoded FRET probes

  • Pierre Vincent
  • Nicolas Gervasi
  • Jin Zhang
Article

Abstract

Signaling cascades involving cyclic nucleotides play key roles in signal transduction in virtually all cell types. Elucidation of the spatiotemporal regulation of cyclic nucleotide signaling requires methods for tracking the dynamics of cyclic nucleotides and the activities of their regulators and effectors in the native biological context. Here we review a series of genetically encoded FRET-based probes for real-time monitoring of cyclic nucleotide signaling with a particular focus on their implementation in neurons. Current data indicate that neurons have a very active metabolism in cyclic nucleotide signaling, which is tightly regulated through a variety of homeostatic regulations.

Keywords

Forskolin Brain Slice Cyclic Nucleotide Guanylyl Cyclase cAMP Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank Professor Ron Harris-Warrick for critically reading this manuscript. This work was supported by CNRS, UPMC, “Fondation pour la Recherche Médicale” and “Fondation pour la Recherche sur le Cerveau” (to P. V.); and by NIH (DK073368 and CA122673), the American Heart Association, the Young Clinical Scientist Award Program of the Flight Attendant Medical Research Institute, and 3M (to J. Z.).

References

  1. Adams, S. R. et al. (1991) Fluorescence ratio imaging of cyclic AMP in single cells. Nature, 349, 694–697PubMedCrossRefGoogle Scholar
  2. Allen, M. D. & Zhang, J. (2006) Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters. Biochem. Biophys. Res. Commun., 348, 716–721PubMedCrossRefGoogle Scholar
  3. Bacskai, B. J. et al. (1993) Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons. Science, 260, 222–226PubMedCrossRefGoogle Scholar
  4. DiPilato, L. M., Cheng, X. & Zhang, J. (2004) Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc. Natl. Acad. Sci. USA, 101, 16513–16518PubMedCrossRefGoogle Scholar
  5. Domingo, B. et al. (2007). Imaging FRET standards by steady-state fluorescence and lifetime methods. Microsc. Res. Tech. 70, 1010–1021Google Scholar
  6. Dunn, T. A. et al. (2006) Imaging of cAMP levels and protein kinase a activity reveals that retinal waves drive oscillations in second-messenger cascades. J. Neurosci., 26, 12807–12815PubMedCrossRefGoogle Scholar
  7. Gervasi, N. et al. (2007) Dynamics of PKA signaling at the membrane, in the cytosol and in the nucleus of neurons in mouse brain slices. J. Neurosci., 27, 2744–2750PubMedCrossRefGoogle Scholar
  8. Gibbs, C. S. et al. (1992) Systematic mutational analysis of cAMP-dependent protein kinase identifies unregulated catalytic subunits and defines regions important for the recognition of the regulatory subunit. J. Biol. Chem., 267, 4806–4814PubMedGoogle Scholar
  9. Goaillard, J.-M., Vincent, P. & Fischmeister, R. (2001) Simultaneous measurements of intracellular cAMP and L-type Ca2+ current in single frog ventricular myocytes. J. Physiol., 530, 79–91PubMedCrossRefGoogle Scholar
  10. Gorbunova, Y. V. & Spitzer, N. C. (2002) Dynamic interactions of cyclic AMP transients and spontaneous Ca(2+) spikes. Nature, 418, 93–96PubMedCrossRefGoogle Scholar
  11. Gordon, G. W. et al. (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J., 74, 2702–2713PubMedCrossRefGoogle Scholar
  12. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem., 260, 3440–3450PubMedGoogle Scholar
  13. Gu, Y. et al. (2004) Quantitative fluorescence resonance energy transfer (FRET) measurement with acceptor photobleaching and spectral unmixing. J. Microsc., 215, 162–173PubMedCrossRefGoogle Scholar
  14. Heim, N. et al. (2007) Improved calcium imaging in transgenic mice expressing a troponin C-based biosensor. Nat. Methods, 4, 127–129PubMedCrossRefGoogle Scholar
  15. Hempel, C. M. et al. (1996) Spatio-temporal dynamics of cAMP signals in an intact neural circuit. Nature, 384, 166–169PubMedCrossRefGoogle Scholar
  16. Hepp, R. et al. (2007) Phosphodiesterase type 2 and the homeostasis of cyclic GMP in living thalamic neurons. J. Neurochem., 102, 1875–1886PubMedCrossRefGoogle Scholar
  17. Honda, A. et al. (2001) Spatiotemporal dynamics of guanosine 3′,5′-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator. Proc. Natl. Acad. Sci. USA, 98, 2437–2442PubMedCrossRefGoogle Scholar
  18. Honda, A. et al. (2005) Cygnets: in vivo characterization of novel cGMP indicators and in vivo imaging of intracellular cGMP. Methods Mol. Biol., 307, 27–43PubMedGoogle Scholar
  19. Hoppe, A., Christensen, K. & Swanson, J. A. (2002) Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys. J., 83, 3652–3664PubMedCrossRefGoogle Scholar
  20. Houslay, M. D. & Milligan, G. (1997) Tailoring cAMP-signalling responses through isoform multiplicity. Trends Biochem. Sci., 22, 217–224PubMedCrossRefGoogle Scholar
  21. Kaupp, U. B. & Seifert, R. (2001) Molecular diversity of pacemaker ion channels. Annu. Rev. Physiol, 63, 235–257PubMedCrossRefGoogle Scholar
  22. Kemp, B. E. (1980) Phosphorylation of acyl and dansyl derivatives of the peptide Leu-Arg-Arg-Ala-Ser-Leu-Gly by the cAMP-dependent protein kinase. J. Biol. Chem., 255, 2914–2918PubMedGoogle Scholar
  23. Lissandron, V. et al. (2005) Improvement of a FRET-based indicator for cAMP by linker design and stabilization of donor-acceptor interaction. J. Mol. Biol., 354, 546–555PubMedCrossRefGoogle Scholar
  24. Lissandron, V. et al. (2007) Transgenic fruit-flies expressing a FRET-based sensor for in vivo imaging of cAMP dynamics. Cell. Signal., 19, 2296–2303PubMedCrossRefGoogle Scholar
  25. Lohse, M. J. et al. (2008) Optical techniques to analyze real-time activation and signaling of G-protein-coupled receptors. Trends Pharmacol. Sci., 29, 159–165PubMedGoogle Scholar
  26. Mongillo, M. et al. (2004) Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases. Circ. Res., 95, 67–75PubMedCrossRefGoogle Scholar
  27. Namiki, S. et al. (2005) NO signalling decodes frequency of neuronal activity and generates synapse-specific plasticity in mouse cerebellum. J. Physiol., 566, 849–863PubMedCrossRefGoogle Scholar
  28. Nausch, L.W. et al. (2008) Differential patterning of cGMP in vascular smooth muscle cells revealed by single GFP-linked biosensors. Proc. Natl. Acad. Sci. USA, 105, 365–370PubMedCrossRefGoogle Scholar
  29. Nikolaev, V. O. et al. (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J. Biol. Chem., 279, 37215–37218PubMedCrossRefGoogle Scholar
  30. Nikolaev, V. O. et al. (2006a) Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching {beta}1-adrenergic but locally confined {beta}2-adrenergic receptor-mediated signaling. Circ. Res., 99, 1084–1091PubMedCrossRefGoogle Scholar
  31. Nikolaev, V. O., Gambaryan, S. & Lohse, M. J. (2006b) Fluorescent sensors for rapid monitoring of intracellular cGMP. Nat. Methods, 3, 23–25PubMedCrossRefGoogle Scholar
  32. Ponsioen, B. et al. (2004) Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep., 5, 1176–1180PubMedCrossRefGoogle Scholar
  33. Rich, T. C. & Karpen, J. W. (2002) Review article: cyclic AMP sensors in living cells: what signals can they actually measure? Ann. Biomed. Eng., 30, 1088–1099PubMedCrossRefGoogle Scholar
  34. Rich, T. C. et al. (2001a). In vivo assessment of local phosphodiesterase activity using tailored cyclic nucleotide-gated channels as cAMP sensors. J. Gen. Physiol. 118, 63–78Google Scholar
  35. Rich, T. C. et al. (2001b). A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell. Proc. Natl. Acad. Sci. USA 98, 13049–13054Google Scholar
  36. Russwurm, M. et al. (2007) Design of fluorescence resonance energy transfer (FRET)-based cGMP indicators: a systematic approach. Biochem. J., 407, 69–77PubMedCrossRefGoogle Scholar
  37. Sato, M., Hida, N., and Umezawa, Y. (2005). Imaging the nanomolar range of nitric oxide with an amplifier-coupled fluorescent indicator in living cells. Proc. Natl. Acad. Sci. USA 102, 14515–14520Google Scholar
  38. Sato, M. et al. (2000) Fluorescent indicators for cyclic GMP based on cyclic GMP-dependent protein kinase Ialpha and green fluorescent proteins. Anal. Chem., 72, 5918–5924PubMedCrossRefGoogle Scholar
  39. Saucerman, J. J. et al. (2006) Systems analysis of PKA-mediated phosphorylation gradients in live cardiac myocytes. Proc. Natl. Acad. Sci. USA, 19, 2650–2658Google Scholar
  40. Shafer, O. T. et al. (2008) Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of drosophila revealed by real-time cyclic AMP imaging. Neuron, 58, 161–163CrossRefGoogle Scholar
  41. Smith, C. M. et al. (1999) The catalytic subunit of cAMP-dependent protein kinase: prototype for an extended network of communication. Prog. Biophys. Mol. Biol., 71, 313–341PubMedCrossRefGoogle Scholar
  42. Tsien, R. Y. & Harootunian, A. T. (1990) Practical design criteria for a dynamic ratio imaging system. Cell Calcium, 11, 93–109PubMedCrossRefGoogle Scholar
  43. Vincent, P. & Brusciano, D. (2001) Cyclic AMP imaging in neurones in brain slice preparations. J. Neurosci. Methods, 108, 189–198PubMedCrossRefGoogle Scholar
  44. Vincent, P. et al. (2006) Live imaging of neural structure and function by fibred fluorescence microscopy. EMBO Rep., 7, 1154–1161PubMedCrossRefGoogle Scholar
  45. Violin, J. D. et al. (2008) β2-adrenergic receptor signaling and desensitization elucidated by quantitative modeling of real time cAMP dynamics. J. Biol. Chem., 283, 2949–2961PubMedCrossRefGoogle Scholar
  46. Willoughby, D. & Cooper, D. M. (2008) Live-cell imaging of cAMP dynamics. Nat. Methods, 5, 29–36PubMedCrossRefGoogle Scholar
  47. Zaccolo, M. et al. (2000) A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat. Cell Biol., 2, 25–29PubMedCrossRefGoogle Scholar
  48. Zacharias, D. A. et al. (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science, 296, 913–916PubMedCrossRefGoogle Scholar
  49. Zetterqvist, O. et al. (1976) The minimum substrate of cyclic AMP-stimulated protein kinase, as studied by synthetic peptides representing the phosphorylatable site of pyruvate kinase (type L) of rat liver. Biochem. Biophys. Res. Commun., 70, 696–703PubMedCrossRefGoogle Scholar
  50. Zhang, J. et al. (2001) Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc. Natl. Acad. Sci. USA, 98, 14997–15002PubMedCrossRefGoogle Scholar
  51. Zhang, J. et al. (2005) Insulin disrupts beta-adrenergic signalling to protein kinase A in adipocytes. Nature, 437, 569–573PubMedCrossRefGoogle Scholar
  52. Zimmermann, T. et al. (2002) Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Lett., 531, 245–249PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.CNRS UMR 7102 Neurobiologie des Processus Adaptatifs, ParisParisFrance
  2. 2.UPMC Univ Paris 6, UMR 7102 Neurobiologie des Processus Adaptatifs, ParisParisFrance
  3. 3.Department of Pharmacology and Molecular Sciences, Solomon H. Snyder Department of Neuroscience and Department of OncologyThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations