Skip to main content
Log in

Abstract

Constrained transmission capacity in electricity networks may give generators the possibility to game the market by specifically causing congestion and thereby appropriating excessive rents. Investment in network capacity can ameliorate such behavior by reducing the potential for strategic behavior. However, modeling Nash equilibria between generators, which explicitly account for their impact on the network, is mathematically and computationally challenging. We propose a three-stage model to describe how network investment can reduce market power exertion: a benevolent planner decides on network upgrades for existing lines anticipating the gaming opportunities by strategic generators. These firms, in turn, anticipate their impact on market-clearing prices and grid congestion. In this respect, we provide the first model endogenizing the trade-off between the costs of grid investment and benefits from reduced market power potential in short-run market clearing. In a numerical example using a three-node network, we illustrate three distinct effects: firstly, by reducing market power exertion, network expansion can yield welfare gains beyond pure efficiency increases. Anticipating gaming possibilities when planning network expansion can push welfare close to a first-best competitive benchmark. Secondly, network upgrades entail a relative shift of rents from producers to consumers when congestion rents were excessive. Thirdly, investment may yield suboptimal or even disequilibrium outcomes when strategic behavior of certain market participants is neglected in network planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Notes

  1. In a similar three-stage setup, Huppmann and Egerer (2015) analyze the dimension of national-strategic behavior: they assume a competitive spot market in the third stage, but national/zonal regulators strategically deciding on network expansion to maximize national welfare in the second stage. The first stage is constituted by a supra-national planner deciding on cross-border interconnector investments. Their model is solved applying the same methodology of reformulating the third-stage constraints as presented here.

  2. Convex cost structures can be implemented by assigning multiple plants to one firm or to the fringe.

  3. Pozo et al. (2013a) implement a comparable approach

  4. Parameters throughout the illustrative application are chosen such as to isolate the incentive structure and respective strategic effects within the theoretical model. When transferring our approach to a more applied real-world setting, numerical values would have to be scaled to track actual costs and frameworks more closely.

  5. Note that transmission lines are directed in a counter-clockwise fashion. A negative flow, for example −3.33 on line l 3 in benchmark case Strategic & Copperplate represents 3.33 units flowing from node 2 to node 1.

  6. The code is available for the interested reader on www.github.com/azerrahn. We invite researchers to use the code and extend it to modified or larger examples.

  7. Computation times for the MPEC sanity checks are negligible.

  8. Consult Boyd and Vandenberghe (2004), chapter 5 for a theoretical exhibition.

  9. We assume for convenience here that vector g F is nonempty, i.e. that there are \(\tilde {F}\) fringe suppliers, beginning with plant s=1. The results can easily be reduced to the case without fringe, i.e. \(\tilde {F}=0\). Moreover, formally excluding nodes with no demand makes matrix Δ strictly positive definite and allows inverting it, which is necessary for Lemma 1 to hold and to follow our proposed procedure.

References

Download references

Acknowledgments

The authors would like to thank Friedrich Kunz, Sauleh Siddiqui and Carlos Ruiz for many valuable comments. Financial support by Energie-Control Austria (ECA) for D. Huppmann within the special series “10 years of e-control” is gratefully acknowledged. The views expressed in this article should not be considered as a statement regarding the views of ECA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Zerrahn.

Appendices

Appendix A: Proof of Proposition 1

First, we derive the Langrangian dual problem for a quadratic problem with a positive definite matrix in a general form:

$$\begin{array}{@{}rcl@{}} \min_{x,y} \quad \tfrac{1}{2} x^{T} D_{x} x + c^{T} \left[\begin{array}{ll} x \\y \end{array}\right] \quad \text{s.t.} \quad A \left[\begin{array}{ll} x \\y \end{array}\right] \leq b \quad (\lambda), \quad B \left[\begin{array}{ll} x \\y \end{array}\right] = e \quad (\nu) \end{array} $$
(10)

where x is the vector of variables that enter the quadratic part of the objective function, and y is the vector of variables that only appear in linear terms. By assumption, D x is symmetric and strictly positive definite.

The Lagrangian (primal) function is then:

$$\begin{array}{@{}rcl@{}} \mathcal{L}(x,y,\lambda,\nu) \,=\, \tfrac{1}{2} x^{T} D_{x} x \!+ c^{T} \left[\begin{array}{ll} x \\y \end{array}\right] \,+\, \left( A \left[\begin{array}{ll} x \\y \end{array}\right] \!- b\right)^{T} \lambda \,+\, \left( B \left[\begin{array}{ll} x \\y \end{array}\right] \,-\, e\right)^{T} \nu \end{array} $$
(11)

Lemma 1

The Lagrangian dual function for (11) is given by

$$\begin{array}{@{}rcl@{}} \mathcal{\hat{L}}(\lambda,\nu,x,y)\! & = &\!- \tfrac{1}{2} \left( c_{x} + {A_{x}^{T}} \lambda \,+\, {B_{x}^{T}} \nu \right)^{T} (D_{x})^{-1} \left( c_{x} + {A_{x}^{T}} \lambda + {B_{x}^{T}} \nu \right) \,-\, b^{T} \lambda - e^{T} \nu \end{array} $$
(12a)
$$\begin{array}{@{}rcl@{}} \text{where} \quad && D_{x} x + c_{x} + \left( A_{x} \right)^{T} \lambda + \left( B_{x} \right)^{T} \nu = 0, \end{array} $$
(12b)
$$\begin{array}{@{}rcl@{}} && c_{y} + \left( A_{y} \right)^{T} \lambda + \left( B_{y}\right)^{T} \nu = 0, \end{array} $$
(12c)

where subscripts indicate that parts of matrices that are multiplied with the respective variable vector.

Proof

The Lagrange dual function is defined as the infimum of the Lagrange primal function over the primal decision variablesFootnote 8. Differentiating (11) with respect to x and y yields

$$\begin{array}{@{}rcl@{}} \frac{\partial \mathcal{L}}{\partial x} &=& D_{x} x + c_{x} + \left( A_{x} \right)^{T} \lambda + \left( B_{x} \right)^{T} \nu = 0 \end{array} $$
(13a)
$$\begin{array}{@{}rcl@{}} & \Rightarrow& x^{*} = - \left( D_{x}\right)^{-1} \left( c_{x} + \left( A_{x} \right)^{T} \lambda + {B_{x}^{T}} \nu \right) \end{array} $$
(13b)
$$\begin{array}{@{}rcl@{}} \frac{\partial \mathcal{L}}{\partial y} &= &c_{y} + \left( A_{y} \right)^{T} \lambda + {B_{y}^{T}} \nu = 0 \end{array} $$
(13c)

Note that \(\mathcal {L}\) is strictly convex in x and y such that the first order equality conditions are necessary and sufficient to ensure a global minimum. Plugging optimality condition (13b) into the (primal) Lagrangian (11)

$$\begin{array}{@{}rcl@{}} \mathcal{L}&=&\tfrac{1}{2} \left[\left[(-D_{x}^{-1})(c_{x}+{A_{x}^{T}}\lambda + {B_{x}^{T}} \nu)\right]^{T}D_{x}\left[(-D_{x}^{-1})(c_{x}+{A_{x}^{T}}\lambda + {B_{x}^{T}} \nu)\right]\right] \\ &&+{c_{x}^{T}}\left[(-D_{x}^{-1})(c_{x}+{A_{x}^{T}}\lambda + {B_{x}^{T}} \nu)\right]+{c_{y}^{T}}y \\ &&+\left[A_{x}\left[(-D_{x}^{-1})(c_{x}+{A_{x}^{T}}\lambda + {B_{x}^{T}} \nu)\right]+A_{y}y-b\right]^{T}\lambda \\ &&+\left[B_{x}\left[(-D_{x}^{-1})(c_{x}+{A_{x}^{T}}\lambda + {B_{x}^{T}} \nu)\right]+B_{y}y-e\right]^{T}\nu \end{array} $$
(13d)
$$\begin{array}{@{}rcl@{}} &=&\tfrac{1}{2}\left[(c_{x}+{A_{x}^{T}}\lambda + {B_{x}^{T}} \nu)^{T}D^{-1}_{x}(c_{x}+{A_{x}^{T}}\lambda + {B_{x}^{T}} \nu)\right] \\ &&-\left[c_{x}^{T}D_{x}^{-1}(c_{x}\,+\,{A_{x}^{T}}\lambda \,+\, {B_{x}^{T}} \nu)+(c_{x}\,+\,{A_{x}^{T}}\lambda \,+\, {B_{x}^{T}} \nu)^{T}D_{x}^{-1}{A_{x}^{T}}\lambda \,+\, (c_{x}+{A_{x}^{T}}\lambda + {B_{x}^{T}} \nu)^{T}D_{x}^{-1}{B_{x}^{T}}\nu \right] \\ &&+c_{y}^{T}y+y^{T}{A_{y}^{T}}\lambda + +y^{T}{B_{y}^{T}}\nu \,-\, b^{T}\lambda - e^{T}\nu \end{array} $$
(13e)

where we have made use of \((D_{x}^{-1})^{T}=D_{x}^{-1}\) due to symmetry of D x . Now observe that from (13c) \({A^{T}_{y}}\lambda + {B^{T}_{y}}\nu =-c_{y}\) and obtain

$$\begin{array}{@{}rcl@{}} \mathcal{L}&=&\tfrac{1}{2}\left[(c_{x}+{A_{x}^{T}}\lambda + {B_{x}^{T}} \nu)^{T}D^{-1}_{x}(c_{x}+{A_{x}^{T}}\lambda + {B_{x}^{T}} \nu)\right] \\ &&\,-\,\left[c_{x}^{T}D_{x}^{-1}(c_{x}\,+\,{A_{x}^{T}}\lambda \,+\, {B_{x}^{T}} \nu)\,+\,(c_{x}\,+\,{A_{x}^{T}}\lambda \,+\, {B_{x}^{T}} \nu)^{T}D_{x}^{-1}{A_{x}^{T}}\lambda \,+\, (c_{x}\,+\,{A_{x}^{T}}\lambda \,+\, {B_{x}^{T}} \nu)^{T}D_{x}^{-1}{B_{x}^{T}}\nu \right] \\ &&+{c_{y}^{T}}y-\!y^{T}c_{y} - b^{T}\lambda - e^{T}\nu \end{array} $$
(13f)

The inner products \({c_{y}^{T}}y\) and y T c y in the last row of (13f) are of dimension (1×1), thus necessarily symmetric and cancel out. Moreover, straightforward algebra yields that the two terms in brackets in the first and second line of (13f) are identical. Therefore,

$$\begin{array}{@{}rcl@{}} \mathcal{\hat{L}}(\lambda,\nu)\,=\,-\tfrac{1}{2}\left[(c_{x}\,+\,{A_{x}^{T}}\lambda + {B_{x}^{T}} \nu)^{T}D_{x}^{-1}(c_{x}\,+\,{A_{x}^{T}}\lambda + {B_{x}^{T}} \nu)\right]\!\,-\,b^{T}\lambda \!- e^{T}\nu \end{array} $$
(13g)

Now, we can set up the dual Lagrangian problem, consisting in maximizing \(\hat {L}\) over λ and ν, while optimality conditions concerning x and y are added as constraints. By construction, further constraints comprise weak positivity of decision variables attached to inequality constraints

$$\begin{array}{@{}rcl@{}} \max_{\lambda,\nu} \quad && \!\!-\tfrac{1}{2}\left[(c_{x}\,+\,{A_{x}^{T}}\lambda \,+\, {B_{x}^{T}} \nu)^{T}D_{x}^{-1}(c_{x}\,+\,{A_{x}^{T}}\lambda \,+\, {B_{x}^{T}} \nu)\right]\!\,-\,b^{T}\lambda \,-\, e^{T}\nu \end{array} $$
(14a)
$$\begin{array}{@{}rcl@{}} \text{s.t.} \qquad && D_{x} x + c_{x} + \left( A_{x} \right)^{T} \lambda + \left( B_{x} \right)^{T} \nu = 0, \end{array} $$
(14b)
$$\begin{array}{@{}rcl@{}} && c_{y} + \left( A_{y} \right)^{T} \lambda + \left( B_{y}\right)^{T} \nu = 0 \end{array} $$
(14c)
$$\begin{array}{@{}rcl@{}} && \lambda \geq 0, \, \nu \in \mathbb{R} \end{array} $$
(14d)

Next, we apply this result to our problem. Rewriting the primal problem (1a) - (1h) in matrix notation in the fashion of (10) yields for the objective function:

$$\begin{array}{@{}rcl@{}} \min_{g^{F},d,\delta,\mathfrak{D}} - \sum\limits_{n \in \mathfrak{N}} \left[\left( a_{n}-\tfrac{1}{2} b_{n} d_{n}\right) d_{n}\right] - \sum\limits_{s \in \mathfrak{F}} {c^{G}_{s}}{g^{F}_{s}} {\hat{=}} \min_{g^{F},d,\delta,\mathfrak{D}} \, \tfrac{1}{2}d^{T}{\Delta} d + \gamma^{T} \left[\begin{array}{lll} d \\ g^{F} \\ \delta \end{array}\right] \\ \end{array} $$
(15a)

where the variable vectors are composed as follows:

$$\begin{array}{@{}rcl@{}} \underset{(\tilde{N}\times1)}{d}= \left[\begin{array}{lllll} d_{1} \\ {\vdots} \\ d_{\tilde{N}} \end{array}\right], \underset{(\tilde{F}\times1)}{g^{F}}= \left[\begin{array}{lllll} {g^{F}_{1}} \\ {\vdots} \\ g^{F}_{\tilde{F}} \end{array}\right], \underset{(N\times1)}{\delta} = \left[\begin{array}{lllll} \delta_{1} \\ {\vdots} \\ \delta_{N} \end{array}\right] \end{array} $$
(15b)

and the parameter matrices asFootnote 9:

$$\begin{array}{@{}rcl@{}} \underset{(\tilde{N} \times \tilde{N})}{\Delta} \,=\, \left[\begin{array}{ccc} b_{1} & {\ldots} & 0 \\ {\vdots} & {\ddots} & {\vdots} \\ 0 & {\ldots} & b_{\tilde{N}} \end{array} \right],~~\underset{((\tilde{N}+\tilde{F}+N)\times 1)}{\gamma}\,=\,\!\left[-a_{1} {\ldots} \,-\,a_{\tilde{N}} \quad {c_{1}^{G}} {\ldots} c_{\tilde{F}}^{G} \quad 0 {\ldots} 0 \right]^{T} \\ \end{array} $$
(15c)

For convenience, let \(\left |\mathfrak {N}\right | = \tilde {N}\), and \(\left |\mathfrak {F}\right | = \tilde {F}\) render the number of nodes at which demand is located, and number of fringe plants respectively. Moreover, observe that Δ fulfills our assumptions of symmetry and strict positive definiteness. Expressing constraints (1b) - (1h) in matrix notation:

$$\begin{array}{@{}rcl@{}} A \left[\begin{array}{lll} d \\ g^{F} \\ \delta \end{array}\right] \leq b \quad (\lambda) \quad &{\hat{=}} \quad \left[A_{d} : A_{g^{F}\delta}\right]\left[\begin{array}{lll} d \\ g^{F} \\ \delta \end{array}\right] \leq b \quad (\lambda), \end{array} $$
(15d)
$$\begin{array}{@{}rcl@{}} B \left[\begin{array}{lll} d \\ g^{F} \\ \delta \end{array}\right] = e \quad (\nu) \quad &{\hat{=}} \quad \left[B_{d} : B_{g^{F}\delta}\right]\left[\begin{array}{lll} d \\ g^{F} \\ \delta \end{array}\right] = e \quad (\nu) \end{array} $$
(15e)

with sub-matrices \(A_{d},A_{g^{F}\delta },B_{d},B_{g^{F}\delta }\) capturing the relevant entries for the respective constraints, and accordingly composed vectors b,e,λ, and ν. We now just have to plug the matrices and vectors into the formulation of the dual Lagrangian problem (14a) - (14d). Straightforward algebra yields for the expression \((c_{x}+{A_{x}^{T}}\lambda + {B_{x}^{T}}\nu )\):

$$\begin{array}{@{}rcl@{}} \left[c_{x}\,+\,{A_{x}^{T}}\lambda + {B_{x}^{T}}\nu\right] \!{\hat{=}}\! \left[\left[\begin{array}{c}-a_{1} \\ {\vdots} \\ -a_{\tilde{N}} \end{array} \right] \,+\, {A_{d}^{T}}\lambda + {B_{d}^{T}}\nu \right] \,=\, \left[\begin{array}{c}-a_{1} + p_{1} - \phi_{1} \\ {\vdots} \\ -a_{\tilde{N}} + p_{\tilde{N}} - \phi_{\tilde{N}} \end{array} \right] \end{array} $$
(16a)

obviously rendering the first term of the dual objective:

$$\begin{array}{@{}rcl@{}} & -&\tfrac{1}{2}\left[(c_{x}+{A^{T}_{x}}\lambda + {B^{T}_{x}}\nu)^{T}D_{x}^{-1}(c_{x}+{A^{T}_{x}}\lambda+ {B^{T}_{x}}\nu)\right] \\ &&{\hat{=}} -\tfrac{1}{2}\left[\left[\begin{array}{c}-a_{1} + p_{1} - \phi_{1} \\ {\vdots} \\ -a_{\tilde{N}} + p_{\tilde{N}} - \phi_{\tilde{N}} \end{array} \right] \right]^{T}{\Delta}^{-1}\left[\left[\begin{array}{c}-a_{1} + p_{1} - \phi_{1} \\ {\vdots} \\ -a_{\tilde{N}} + p_{\tilde{N}} - \phi_{\tilde{N}} \end{array} \right]\right] \\ &&{\hat{=}} -\tfrac{1}{2}\sum\limits_{n \in \mathfrak{N}}\tfrac{1}{b_{n}}\left( a_{n}-p_{n}+\phi_{n}\right)^{2} \end{array} $$
(16b)

For the second term of (14a) it immediately follows:

$$\begin{array}{@{}rcl@{}} b^{T}\lambda + e^{T}\nu =\sum\limits_{l}(\bar{f}_{l}+e_{l})(\bar{\mu}_{l}+\underline{\mu}_{l}) + \sum\limits_{n} p_{n}\left( \sum\limits_{s \in \mathfrak{S}_{n}}{g^{S}_{s}}\right) + \sum\limits_{s \in \mathfrak{F}}\beta_{s}\bar{g}^{F}_{s} \end{array} $$
(16c)

Bringing (16b) and (16c) together thus yields the dual objective. The constraint set of the dual is abstractly given by:

$$\begin{array}{@{}rcl@{}} D_{x} x &+& c_{x} + \left( A_{x} \right)^{T} \lambda + \left( B_{x} \right)^{T} \nu {\hat{=}} {\Delta} d - \left[a_{1} \; {\ldots} \; a_{\tilde{N}}\right] + \left( A_{d}\right)^{T} \lambda + \left( B_{d}\right)^{T} \nu = 0, \end{array} $$
(16d)
$$\begin{array}{@{}rcl@{}} c_{y}&+&{A_{y}^{T}}\lambda + {B_{y}^{T}}\nu {\hat{=}} \left[c_{1}^{G} \; {\ldots} \; c_{\tilde{F}}^{G} \quad 0 \; {\ldots} \; 0 \right]^{T} + A_{g^{F}\delta}^{T}\lambda + B_{g^{F}\delta}^{T}\nu =0, \end{array} $$
(16e)

cf. (14b) - (14c). Plugging in the relevant matrices reproduces KKT conditions (2a) - (2c) of the original problem:

$$\begin{array}{@{}rcl@{}} {c^{G}_{s}} - p_{n, s \in \mathfrak{S}_{n}} + \beta_{s}-\psi_{s} &=& 0 \quad \forall s \in \mathfrak{F} \end{array} $$
(16f)
$$\begin{array}{@{}rcl@{}} - a_{n} + b_{n} d_{n} + p_{n} - \phi_{n} &=& 0 \quad \forall n \in \mathfrak{N} \end{array} $$
(16g)
$$\begin{array}{@{}rcl@{}} \sum\limits_{k} B_{kn}p_{n} + \sum\limits_{l} H_{ln} \left( \overline{\mu}_{l} - \underline{\mu}_{l}\right) + \genfrac\{\}{0pt}{0}{\gamma \quad \text{if }n = \hat{n}}{0 \quad \text{else} \hspace{0.55 cm}} &= &0 \quad \forall n \end{array} $$
(16h)

Therefore, the equivalent Lagrangian dual problem to (1a) - (1h) is given by

$$\begin{array}{@{}rcl@{}} \max_{p,\overline{\mu},\underline{\mu},\beta, \psi, \phi, \gamma} &-& \tfrac{1}{2} \sum\limits_{n \in \mathfrak{N}} \frac{1}{b_{n}} \left[a_{n}- p_{n} + \phi_{n}\right]^{2} - \sum\limits_{l}(\bar{f}_{l}+e_{l})(\bar{\mu}_{l}+\underline{\mu}_{l}) \\ &-& \sum\limits_{n} p_{n}\left( \sum\limits_{s \in \mathfrak{S}_{n}}{g^{S}_{s}}\right)- \sum\limits_{s \in \mathfrak{F}}\beta_{s}\bar{g}^{F}_{s} \end{array} $$
(17a)
$$\begin{array}{@{}rcl@{}} \text{s.t.}&& (16\mathrm{f}), (16\mathrm{g}), (16\mathrm{h}) \end{array} $$
(17b)
$$\begin{array}{@{}rcl@{}} && \bar{\mu},\underline{\mu},\beta,\psi,\phi \geq 0, \, p,\gamma \in \mathbb{R} \end{array} $$
(17c)

Appendix B: KKT conditions of the strategic players

The following equations and inequalities constitute the set of KKT conditions for all strategic players. Each vector satisfying Eqs. (18a19l) constitutes a stationary point of the spot market equilibrium problem. First all KKT conditions without complementarity requirements.

$$\begin{array}{@{}rcl@{}} -p_{n, s \in \mathfrak{S}_{n}} + {c^{G}_{s}} + {\beta^{S}_{s}} - {\psi^{S}_{s}} - \iota^{S}_{ni, s \in \mathfrak{S}_{n}, s \in \mathfrak{S}_{i}}\\ + \xi^{S}_{i, s \in \mathfrak{S}_{i}}p_{n, s \in \mathfrak{S}_{n}} &= 0 & \quad \forall \ s \notin \mathfrak{F} \end{array} $$
(18a)
$$\begin{array}{@{}rcl@{}} -\iota^{S}_{ni, s \in \mathfrak{S}_{n}} + \beta^{SF}_{si} - \psi^{SF}_{si} + {\xi_{i}^{S}}\left( {c^{G}_{s}} + \beta_{s}\right) &= 0 & \quad \forall \ s \in \mathfrak{F},i \end{array} $$
(18b)
$$\begin{array}{@{}rcl@{}} -\sum\limits_{s \in \left( \mathfrak{S}_{n} \cap \mathfrak{S}_{i}\right)}{g^{S}_{s}} - \sum\limits_{s \in \left( \mathfrak{S}_{n} \cap \mathfrak{F}\right)}\zeta^{S}_{si} + \eta^{S}_{ni} + \sum\limits_{k}\theta^{S}_{ki}B_{nk} && \\ + {\xi^{S}_{i}}\tfrac{1}{b_{n}}\left( p_{n} - a_{n} - \phi_{n}\right) + {\xi^{S}_{i}}\sum\limits_{s \in \mathfrak{S}_{n}}{g^{S}_{s}} &= 0& \quad \forall \ n,i \end{array} $$
(18c)
$$\begin{array}{@{}rcl@{}} b_{n}\eta^{S}_{ni} + \iota^{S}_{ni} - \phi^{S}_{ni} - {\xi^{S}_{i}}\left( a_{n} - b_{n}d_{n}\right) &= 0 & \quad \forall \ n,i \end{array} $$
(18d)
$$\begin{array}{@{}rcl@{}} \sum\limits_{k}B_{kn}\iota_{ki}^{S} + \sum\limits_{l}H_{ln}\left( \overline{\mu}_{li}^{S} - \underline{\mu}_{li}^{S}\right) + \genfrac\{\}{0pt}{0}{{\gamma^{S}_{i}} \quad \text{if }n = \hat{n}}{0 \quad \text{else} \hspace{0.55 cm}} &= 0 & \quad \forall \ n,i \end{array} $$
(18e)
$$\begin{array}{@{}rcl@{}} \zeta^{S}_{si} + {\xi^{S}_{i}}\overline{g}^{F}_{s} &\geq 0 & \quad \forall \ s \in \mathfrak{F}, i \end{array} $$
(18f)
$$\begin{array}{@{}rcl@{}} -\zeta^{S}_{si} &\geq 0 & \quad \forall \ s \in \mathfrak{F}, i \end{array} $$
(18g)
$$\begin{array}{@{}rcl@{}} -\eta^{S}_{ni} + {\xi^{S}_{i}}\left[\tfrac{1}{b_{n}}\left( \phi_{n} + a_{n} - p_{n}\right)\right] &\geq 0 & \quad \forall \ n,i \end{array} $$
(18h)
$$\begin{array}{@{}rcl@{}} \sum\limits_{n}\theta_{ni}^{S} H_{ln} + {\xi^{S}_{i}}\left( \bar{f}_{l}+e_{l}\right) &\geq 0 & \quad \forall \ l,i \end{array} $$
(18i)
$$\begin{array}{@{}rcl@{}} -\sum\limits_{n}\theta_{ni}^{S}H_{ln} + {\xi^{S}_{i}}\left( \bar{f}_{l}+e_{l}\right) &\geq 0 & \quad \forall \ l,i \end{array} $$
(18j)
$$\begin{array}{@{}rcl@{}} \theta_{\hat{n}i}^{S} &= 0 & \quad \forall \ i \end{array} $$
(18k)
$$\begin{array}{@{}rcl@{}} \overline{g}^{S}_{s} - &\geq 0 & \quad \forall \ s \notin \mathfrak{F} \end{array} $$
(18l)
$$\begin{array}{@{}rcl@{}} {g^{S}_{s}} &\geq 0 & \quad \forall \ s \notin \mathfrak{F} \end{array} $$
(18m)
$$\begin{array}{@{}rcl@{}} {c^{G}_{s}} - p_{n, s \in \mathfrak{S}_{n}} + \beta_{s} - \psi_{s} &= 0 & \quad \forall \ s \in \mathfrak{F}, i \end{array} $$
(18n)
$$\begin{array}{@{}rcl@{}} - a_{n} + b_{n} d_{n} + p_{n} - \phi_{n} &= 0 & \quad \forall \ n \in \mathfrak{N},i \end{array} $$
(18o)
$$\begin{array}{@{}rcl@{}} \sum\limits_{k} B_{kn} p_{k} + \sum\limits_{l} H_{ln} \left( \overline{\mu}_{l} - \underline{\mu}_{l}\right) + \genfrac\{\}{0pt}{0}{\gamma \quad \text{if }n = \hat{n}}{0 \quad \text{else} \hspace{0.55 cm}} &= 0 & \quad \forall \ n,i \end{array} $$
(18p)
$$\begin{array}{@{}rcl@{}} -\sum\limits_{s \in \mathfrak{S}_{n}} \left( {g^{S}_{s}} + {g^{F}_{s}}\right) + \sum\limits_{k} B_{nk} \delta_{k} + d_{n} &=0 & \quad \forall \ n,i \end{array} $$
(18q)
$$\begin{array}{@{}rcl@{}} \overline{f}_{l} + e_{l} - \sum\limits_{k} H_{lk} \delta_{k} &\geq 0 & \quad \forall \ l,i \end{array} $$
(18r)
$$\begin{array}{@{}rcl@{}} \overline{f}_{l} + e_{l} + \sum\limits_{k} H_{lk} \delta_{k} &\geq 0 & \quad \forall \ l,i \end{array} $$
(18s)
$$\begin{array}{@{}rcl@{}} \overline{g}^{F}_{s} - {g^{F}_{s}} &\geq 0 & \quad \forall \ s \in \mathfrak{F}, i \end{array} $$
(18t)
$$\begin{array}{@{}rcl@{}} {g^{F}_{S}} &\geq 0 & \quad \forall \ s \in \mathfrak{F}, i \end{array} $$
(18u)
$$\begin{array}{@{}rcl@{}} d_{n} &\geq 0 & \quad \forall \ n,i \end{array} $$
(18v)
$$\begin{array}{@{}rcl@{}} \delta_{\hat{n}} &= 0 & \quad \forall \ i \end{array} $$
(18w)

Below, we list all complementarity requirements which are replaced by disjunctive constraints.

$$\begin{array}{@{}rcl@{}} \sum\limits_{i} \left( \zeta^{S}_{si} + {\xi^{S}_{i}}\overline{g}^{F}_{s}\right) \!&\leq& r^{\beta}_{s}K^{\beta}_{s}, \quad \beta_{s} \leq \left( 1\,-\,r^{\beta}_{s}\right)K^{\beta}_{s} \quad \forall \ s \in \mathfrak{F} \end{array} $$
(19a)
$$\begin{array}{@{}rcl@{}} \sum\limits_{i}\left( -\zeta^{S}_{si}\right) \!&\leq& r^{\psi}_{s}K^{\psi}_{s}, \quad \psi_{s} \leq \left( 1-r^{\psi}_{s}\right)K^{\psi}_{s} \quad \forall \ s \in \mathfrak{F} \end{array} $$
(19b)
$$\begin{array}{@{}rcl@{}} \sum\limits_{i}\left( -\eta^{S}_{ni} + {\xi^{S}_{i}}\left[\tfrac{1}{b_{n}}\left( \phi_{n} + a_{n} - p_{n}\right)\right]\right) \!&\leq& r^{\phi}_{n}K^{\phi}_{n}, \quad \phi_{n} \leq \left( 1-r^{\phi}_{n}\right)K^{\phi}_{n} \quad \forall \ n \end{array} $$
(19c)
$$\begin{array}{@{}rcl@{}} \sum\limits_{i}\left( \sum\limits_{n}\theta_{ni}^{S} H_{ln} \!+ {\xi^{S}_{i}}\left( \bar{f}_{l}+e_{l}\right)\right) \!&\leq& r^{\overline{\mu}}_{l}K^{\overline{\mu}}_{l}, \quad \overline{\mu}_{l} \leq \left( 1-r^{\overline{\mu}}_{l}\right)K^{\overline{\mu}}_{l} \quad \forall \ l \end{array} $$
(19d)
$$\begin{array}{@{}rcl@{}} \sum\limits_{i}\left( \sum\limits_{n}\theta_{ni}^{S} H_{ln} + {\xi^{S}_{i}}\left( \bar{f}_{l}+e_{l}\right)\right) \!&\leq& r^{\underline{\mu}}_{l}K^{\underline{\mu}}_{l}, \quad \underline{\mu}_{l} \leq \left( 1-r^{\underline{\mu}}_{l}\right)K^{\underline{\mu}}_{l} \quad \forall \ l \end{array} $$
(19e)
$$\begin{array}{@{}rcl@{}} \overline{g}^{S}_{s} - {g^{S}_{s}} \!&\leq &r^{\beta^{S}}_{s}K^{\beta^{S}}_{s}, \quad {\beta^{S}_{s}} \leq \left( 1-r^{\beta^{S}}_{s}\right)K^{\beta^{S}}_{s} \quad \forall \ s \notin \mathfrak{F} \end{array} $$
(19f)
$$\begin{array}{@{}rcl@{}} {g^{S}_{s}} \!&\leq& r^{\psi^{S}}_{s}K^{\psi^{S}}_{s}, \quad {\psi^{S}_{s}} \leq \left( 1- r^{\psi^{S}}_{s}\right)K^{\psi^{S}}_{s} \quad \forall \ s \notin \mathfrak{F} \end{array} $$
(19g)
$$\begin{array}{@{}rcl@{}} \overline{f}_{l} + e_{l} - \sum\limits_{k} H_{lk} \delta_{k} \!&\leq& r^{\overline{\mu}^{S}}_{l}K^{\overline{\mu}^{S}}_{l}, \quad \sum\limits_{i}\overline{\mu}^{S}_{li} + \overline{\mu}_{l} \!\leq\! \left( 1\!-r^{\overline{\mu}^{S}}_{l}\right)K^{\overline{\mu}^{S}}_{l} \quad \forall \ l \end{array} $$
(19h)
$$\begin{array}{@{}rcl@{}} \overline{f}_{l} + e_{l} - \sum\limits_{k} H_{lk} \delta_{k} \!&\leq&\! r^{\underline{\mu}^{S}}_{l}K^{\underline{\mu}^{S}}_{l}, \quad \sum\limits_{i}\underline{\mu}^{S}_{li} + \underline{\mu}_{l} \leq \left( 1\!-r^{\underline{\mu}^{S}}_{l}\right)K^{\underline{\mu}^{S}}_{l} \quad \forall \ l \end{array} $$
(19i)
$$\begin{array}{@{}rcl@{}} \overline{g}^{F}_{s} - {g^{F}_{s}} &\leq& r^{\beta^{SF}}_{s}K^{\beta^{SF}}_{s}, \quad \sum\limits_{i}\beta^{SF}_{si} + \beta_{s} \leq \left( 1-r^{\beta^{SF}}_{s}\right)K^{\beta^{SF}}_{s} \quad \forall \ s \in \mathfrak{F} \end{array} $$
(19j)
$$\begin{array}{@{}rcl@{}} {g^{F}_{s}} &\!\leq\!& r^{\psi^{SF}}_{s}K^{\psi^{SF}}_{s}, \quad \sum\limits_{i} \psi^{SF}_{si} \,+\, \psi_{s} \!\leq\! \left( 1\!-r^{\psi^{SF}}_{s}\right)K^{\psi^{SF}}_{s} \quad \forall \ s \in \mathfrak{F} \end{array} $$
(19k)
$$\begin{array}{@{}rcl@{}} d_{n} &\leq& r^{\phi^{S}}_{n}K^{\phi^{S}}_{n}, \qquad \sum\limits_{i}\phi^{S}_{ni} + \phi_{n} \leq \left( 1-r^{\phi^{S}}_{n}\right)K^{\phi^{S}}_{n} \quad \forall \ n \end{array} $$
(19l)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zerrahn, A., Huppmann, D. Network Expansion to Mitigate Market Power. Netw Spat Econ 17, 611–644 (2017). https://doi.org/10.1007/s11067-017-9338-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-017-9338-1

Keywords

Navigation