Finding Outbreak Trees in Networks with Limited Information

Abstract

Real-time control of infectious disease outbreaks represents one of the greatest epidemiological challenges currently faced. In this paper we address the problem of identifying contagion patterns responsible for the spread of a disease in a network, which can be applied in real-time to evaluate an ongoing outbreak. We focus on the scenario where limited information, i.e. infection reports which may or may not include the actual source, is available during an ongoing outbreak and we seek the most likely infection tree that spans at least a set of known infected nodes. This problem can be represented using a maximum likelihood constrained Steiner tree model where the objective is to find a spanning tree with an assignment of integer nodes weights. We propose a novel formulation and solution method based on a two-step heuristic which (1) reduces the initial graph using a polynomial time algorithm designed to find feasible infection paths and (2) solves an exact mixed integer linear programming reformulation of the maximum likelihood model on the resulting subgraph. The proposed methodology can be applied to outbreaks which may evolve from multiple sources. Simulated contagion episodes are used to evaluate the performance of our solution method. Our results show that the approach is computationally efficient and is able to reconstruct a significant proportion of the outbreak, even in the context of low levels of information availability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. AJ D A R (2007) Beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  Google Scholar 

  2. Anderson R, May R (1991) Infectious diseases of humans: dynamics and control. Oxford University Press

  3. Balthrop J, Forrest S, Newman M, Williamson M (2004) Email networks and the spread of computer viruses. Science 304(5670):527–529

    Article  Google Scholar 

  4. Barabási A L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  Google Scholar 

  5. Broeck W V, Gioannini C, Gonċalves B, Quaggiotto M, Colizza V, Vespignani A (2011) The gleamviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. BMC BMC Infect Dis 11(1):37

    Article  Google Scholar 

  6. Clauset A, Shalizi C, Newman M (2009) Power-law distributions in empirical data. SIAM Rev 51(4):661–703. doi:10.1137/070710111

    Article  Google Scholar 

  7. Coleman J, Menzel H, Katz E (1966) Medical innovations: a diffusion study. Bobbs Merrill, New York

    Google Scholar 

  8. Cummings D, Burke D, Epstein J M, Singa R, Chakravarty S (2002) Toward a containment strategy for smallpox bioterror: an individual-based computational approach. Brookings Institute Press

  9. D B V C, B G H H, JJ R A V (2009) The modelling of global epidemics: stochastic dynamics and predictability. Proc Natl Acad Sci USA 106:21484–21489

    Article  Google Scholar 

  10. DT H, M CT, DJ S, L M, JK F, J W, MEJ W (2003) The construction and analysis of epidemic trees with reference to the 2001 uk foot-and-mouth outbreak. Proc R Soc B 270:121–127

    Article  Google Scholar 

  11. Dunham J (2005) An agent-based spatially explicit epidemiological model in mason. J Artif Societies and Social Simulation 9(1):3

    Google Scholar 

  12. Erath A, Löchl M, Axhausen K W (2009) Graph-theoretical analysis of the swiss road and railway networks over time. Netw Spat Econ 9(3):379–400

    Article  Google Scholar 

  13. Eubank S, Guclu H, Kumar V, Marathe M, Srinivasan A, Toroczkai Z, Wang N (2004) Modeling disease outbreaks in realistic urban social networks. Nature 429:180–184

    Article  Google Scholar 

  14. Fajardo D, Gardner L (2013) Inferring contagion patterns in social contact networks with limited infection data. networks and spatial economics

  15. Ferguson N, Cummings D, Fraser C, Cajka J, Cooley P, Burke D (2006) Strategies for mitigating an influenza pandemic. Nature 442:448–452

    Article  Google Scholar 

  16. Gardner L M, Fajardo D, Waller S T (2012) Inferring infection-spreading links in an air traffic network. Transp Res Rec: J Transp Res Board 2300(1):13–21. doi:10.3141/2300-02

    Article  Google Scholar 

  17. Gardner L M, Fajardo D, Travis W S (2014) Inferring contagion patterns in social contact networks using a maximum likelihood approach. ASCE, natural hazards review

  18. Garey M, Johnson D (1977) The rectilinear Steiner tree problem is NP-complete. SIAM J Appl Math 32(4):826–834. doi:10.1137/0132071

    Article  Google Scholar 

  19. Gastner M T, Newman M E (2006) The spatial structure of networks. Eur Phys J B-Condens Matter Complex Syst 49(2):247–252

    Article  Google Scholar 

  20. Gonzales M, Hidalgo C, Barabási A L (2008) Understanding individual human mobility patterns. Nature 453:479–482

    Google Scholar 

  21. Gouveia L, Magnanti T L (2003) Network flow models for designing diameter-constrained minimum-spanning and steiner trees. Networks 41(3):159–173. doi:10.1002/net.10069

    Article  Google Scholar 

  22. Gouveia L, Simonetti L, Uchoa E (2011) Modeling hop-constrained and diameter-constrained minimum spanning tree problems as steiner tree problems over layered graphs. Math Program 128(1–2):123–148. doi:10.1007/s10107-009-0297-2

    Article  Google Scholar 

  23. Graham R L, Hell P (1985) On the history of the minimum spanning tree problem. Ann Hist Comput 7(1):43–57. doi:10.1109/MAHC.1985.10011

    Article  Google Scholar 

  24. Hagberg A A, Schult D A, Swart P J (2008) Exploring network structure, dynamics, and function using networkX. In: Proceedings of the 7th python in science conference (SciPy2008), Pasadena, pp 11–15

  25. Hasan S, Ukkusuri S (2011) A contagion model for understanding the propagation of hurricane warning information. Transp Res B 45:1590–1605

    Article  Google Scholar 

  26. Hoogendoorn S P, Bovy P H (2005) Pedestrian travel behavior modeling. Netw Spat Econ 5(2):193–216

    Article  Google Scholar 

  27. Hwang F K, Richards D S (1992) Steiner tree problems. Networks 22 (1):55–89. doi:10.1002/net.3230220105

    Article  Google Scholar 

  28. Illenberger J, Nagel K, Flötteröd G (2013) The role of spatial interaction in social networks. Netw Spat Econ 13(3):255–282

    Article  Google Scholar 

  29. Jombart T, Eggo RM, Dodd P, Balloux F (2009) Spatiotemporal dynamics in the early stages of the 2009 a/h1n1 influenza pandemic. PLoS currents influenza

  30. Kinney R, Crucitti P, Albert R, Latora V (2005) Modeling cascading failures in the north american power grid. Eur Phys J B 46(1):101–107

    Article  Google Scholar 

  31. Lam W H, Huang H J (2003) Combined activity/travel choice models: time-dependent and dynamic versions. Netw Spat Econ 3(3):323–347

    Article  Google Scholar 

  32. Liberti L, Cafieri S, Tarissan F (2009) Reformulations in mathematical programming : a computational approach. In: Foundations of computational intelligence volume 3 - global optimization. Springer

  33. Luo W, Tay W P, Leng M (2013) Identifying infection sources and regions in large networks. IEEE Trans Sigs Process 61(11):2850–2865

    Article  Google Scholar 

  34. Murray J (2002) Mathematical biology, 3rd edn. Springer

  35. Newman M, Forrest S, Balthrop J (2002) Email networks and the spread of computer viruses. Phys Rev E 66(3)

  36. P L, M S, A R (2009) Reconstructing the initial global spread of a human influenza pandemic: a bayesian spatial-temporal model for the global spread of h1n1pdm. PLoS currents influenza

  37. Ramadurai G, Ukkusuri S (2010) Dynamic user equilibrium model for combined activity-travel choices using activity-travel supernetwork representation. Netw Spat Econ 10(2):273–292

    Article  Google Scholar 

  38. Roche B, Drake J, Rohani P (2011) An agent-based model to study the epidemiological and evolutionary dynamics of influenza viruses. BMC Bioinforma 12 (1):87

    Article  Google Scholar 

  39. Roorda M J, Carrasco J A, Miller E J (2009) An integrated model of vehicle transactions, activity scheduling and mode choice. Transp Res B Methodol 43(2):217–229

    Article  Google Scholar 

  40. Rosenwein M B, Wong R T (1995) A constrained steiner tree problem. European journal of operational research

  41. Rosseel M (1968) Comments on a paper by romesh saigal: a constrained shortest route problem. Oper Res 16(6):1232–1234

    Article  Google Scholar 

  42. Sachtjen M, Carreras B, Lynch V (2000) Disturbances in a power transmission system. Phys Rev E 61(5):4877–4882

    Article  Google Scholar 

  43. Saigal R (1968) A constrained shortest route problem. Oper Res 16(1):205–209

    Article  Google Scholar 

  44. Santos M, Drummond L M, Uchoa E (2010) A distributed dual ascent algorithm for the hop-constrained steiner tree problem. Oper Res Lett 38(1):57–62. doi:10.1016/j.orl.2009.09.008

    Article  Google Scholar 

  45. Schintler L A, Kulkarni R, Gorman S, Stough R (2007) Using raster-based gis and graph theory to analyze complex networks. Netw Spat Econ 7(4):301–313

    Article  Google Scholar 

  46. Sornette D (2003) Why stock markets crash: critical events in complex financial systems. Princeton University Press

  47. V C A B, M B A V (2006) The modelling of global epidemics: Stochastic dynamics and predictability. Bull Math Biol 68:1893–1921

    Article  Google Scholar 

  48. Voss S (1999) The steiner tree problem with hop constraints. Annals of operations research

  49. Wallace R, HoDac H, Lathrop R, Fitch W (2007) A statistical phylogeography of influenza a h5n1. Proc Natl Acad Sci USA 104(11):4473–4478

    Article  Google Scholar 

  50. Wesolowski A, Buckee C, Bengtsson L, Wetter E, Lu X, Tatem A (2014) Commentary: containing the ebola outbreak–the potential and challenge of mobile network data. PLOS currents outbreaks

  51. Yen J Y (1971) Finding the k shortest loopless paths in a network. Management science

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Rey.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rey, D., Gardner, L. & Waller, S.T. Finding Outbreak Trees in Networks with Limited Information. Netw Spat Econ 16, 687–721 (2016). https://doi.org/10.1007/s11067-015-9294-6

Download citation

Keywords

  • Contagion patterns
  • Social contact networks
  • Network optimization
  • Integer programming
  • Shortest path