Skip to main content

Advertisement

Log in

Robust Facility Location Problem for Hazardous Waste Transportation

  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

We consider a robust facility location problem for hazardous materials (hazmat) transportation considering routing decisions of hazmat carriers. Given a network and a known set of nodes from which hazmat originate, we compute the locations of hazmat processing sites (e.g. incinerators) which will minimize total cost, in terms of fixed facility cost, transportation cost, and exposure risk. We assume that hazmat will be taken to the closest existing processing site. We present an exact full enumeration method, which is useful for small or medium-size problems. For larger problems, the use of a genetic algorithm is explored. Through numerical experiments, we discuss the impact of uncertainty and robust optimization in the hazmat combined location-routing problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Albareda-Sambola M, Fernandez E, Laporte G (2007) Heuristic and lower bound for a stochastic location-routing problem. Eur J Oper Res 179(3):940–955

    Article  Google Scholar 

  • Alumur S, Kara B (2007) A new model for the hazardous waste location-routing problem. Comput Oper Res 34(5):1406–1423

    Article  Google Scholar 

  • Averbakh I, Berman O (1997) Minimax regret p-center location on a network with demand uncertainty. Locat Sci 5(4):247–254

    Article  Google Scholar 

  • Averbakh I, Berman O (2000a) Algorithms for the robust 1-center problem on a tree. Eur J Oper Res 123(2):292–302

    Article  Google Scholar 

  • Averbakh I, Berman O (2000b) Minmax regret median location on a network under uncertainty. INFORMS J Comput 12(2):104–110

    Article  Google Scholar 

  • Baron O, Milner J, Naseraldin H (2011) Facility location: A robust optimization approach. Prod Oper Manag 20(5):772–785

    Article  Google Scholar 

  • Bell MGH (2006) Mixed route strategies for the risk-averse shipment of hazardous materials. Netw Spat Econ 6(3-4):253–265

    Article  Google Scholar 

  • Bianco L, Caramia M, Giordani S (2009) A bilevel flow model for hazmat transportation network design. Transp Res Part C: Emerg Technol 17(2):175–196

    Article  Google Scholar 

  • Bianco L, Caramia M, Giordani S, Piccialli V (2013) Operations research models for global route planning in hazardous materials transportation. In: Batta R, Kwon C (eds) Handbook of OR/MS models in hazardous materials transportation. Springer, New York

    Google Scholar 

  • Bozkaya B, Yanik S, Balcisoy S (2010) A GIS-based optimization framework for competitive multi-facility location-routing problem. Netw Spat Econ 10(3):297–320

    Article  Google Scholar 

  • Cappanera P, Gallo G, Maffioli F (2003) Discrete facility location and routing of obnoxious activities. Discret Appl Math 133(1-3):3–28

    Article  Google Scholar 

  • Carrizosa E, Nickel S (2003) Robust facility location. Math Methods Oper Res 58(2):331–349

    Article  Google Scholar 

  • Current J, Ratick S (1995) A model to assess risk, equity and efficiency in facility location and transportation of hazardous materials. Locat Sci 3(3):187–201

    Article  Google Scholar 

  • Erkut E, Alp O (2007) Designing a road network for hazardous materials shipments. Comput Oper Res 34(5):1389–1405

    Article  Google Scholar 

  • Erkut E, Gzara F (2008) Solving the hazmat transport network design problem. Comput Oper Res 35(7):2234–2247

    Article  Google Scholar 

  • Erkut E, Ingolfsson A (2005) Transport risk models for hazardous materials: revisited. Oper Res Lett 33(1):81–89

    Article  Google Scholar 

  • Erkut E, Neuman S (1989) Analytical models for locating undesirable facilities. Eur J Oper Res 40(3):275–291

    Article  Google Scholar 

  • Erkut E, Verter V (1998) Modeling of transport risk for hazardous materials. Oper Res 46(5):625–642

    Article  Google Scholar 

  • Erkut E, Tjandra SA, Verter V (2007) Hazardous materials transportation. In: Barnhart C, Laporte G (eds) Transportation, volume 14 of handbooks in operations research and management science, chapter 9. Elsevier, Amsterdam, The Netherlands, pp 539–621

    Google Scholar 

  • Franca P, Luna H (1982) Solving stochastic transportation-location problems by generalized benders decomposition. Transp Sci 16(2):113–126

    Article  Google Scholar 

  • Garrido RA (2008) Road pricing for hazardous materials transportation in urban networks. Netw Spat Econ 8(2-3):273–285

    Article  Google Scholar 

  • Giannikos I (1998) A multiobjective programming model for locating treatment sites and routing hazardous wastes. Eur J Oper Res 104(2):333–342

    Article  Google Scholar 

  • Gülpınar N, Pachamanova D, Çanakoğlu E (2013) Robust strategies for facility location under uncertainty. Eur J Oper Res 225(1):21–35

    Article  Google Scholar 

  • Gzara F (2013) A cutting plane approach for bilevel hazardous material transport network design. Oper Res Lett 41(1):40–46

    Article  Google Scholar 

  • Jacobs TL, Warmerdam JM (1994) Simultaneous routing and siting for hazardous-waste operations. J Urban Plan Dev 120(3):115–131

    Article  Google Scholar 

  • Jaramillo JH, Bhadury J, Batta R (2002) On the use of genetic algorithms to solve location problems. Comput Oper Res 29(6):761–779

    Article  Google Scholar 

  • Kang Y, Batta R, Kwon C (2013) Value-at-risk model for hazardous material transportation. Ann Oper Res Forthcom: 1–27

  • Kara B, Verter V (2004) Designing a road network for hazardous materials transportation. Transp Sci 38(2):188–196

    Article  Google Scholar 

  • Killmer K, Anandalingam G, Malcolm S (2001) Siting noxious facilities under uncertainty. Eur J Oper Res 133(3):596–607

    Article  Google Scholar 

  • Klibi W, Lasalle F, Martel A, Ichoua S (2010) The stochastic multiperiod location transportation problem. Transp Sci 44(2):221–237

    Article  Google Scholar 

  • Kwon C, Lee T, Berglund P (2013) Robust shortest path problems with two uncertain multiplicative cost coefficients. Nav Res Logist 60(5):375–394

    Article  Google Scholar 

  • Laporte G (1988) Location-routing problems. In: Golden B, Assad A (eds) Vehicle routing: methods and studies. North-Holland, Amsterdam, pp 163–198

    Google Scholar 

  • Laporte G, Louveaux F, Mercure H (1989) Models and exact solutions for a class of stochastic location-routing problems. Eur J Oper Res 39(1):71–78

    Article  Google Scholar 

  • List G, Mirchandani P (1991) An integrated network/planar multiobjective model for routing and siting for hazardous materials and wastes. Transp Sci 25(2):146–156

    Article  Google Scholar 

  • Marcotte P, Mercier A, Savard G, Verter V (2009) Toll policies for mitigating hazardous materials transport risk. Transp Sci 43(2):228–243

    Article  Google Scholar 

  • Min H, Jayaraman V, Srivastava R (1998) Combined location-routing problems: A synthesis and future research directions. Eur J Oper Res 108(1):1–15

    Article  Google Scholar 

  • Nagy G, Salhi S (2007) Location-routing: Issues, models and methods. Eur J Oper Res 177(2):649–672

    Article  Google Scholar 

  • Nema AK, Gupta S (1999) Optimization of regional hazardous waste management systems: an improved formulation. Waste Manag 19(7-8):441–451

    Article  Google Scholar 

  • ReVelle C, Cohon J, Shobrys D (1991) Simultaneous siting and routing in the disposal of hazardous wastes. Transp Sci 25(2):138–145

    Article  Google Scholar 

  • Shen Z (2007) Integrated supply chain design models: a survey and future research directions. J Ind Manag Optim 3(1):1–27

    Article  Google Scholar 

  • Snyder LV (2006) Facility location under uncertainty: a review. IIE Trans 38(7):547–564

    Article  Google Scholar 

  • Stowers CL, Palekar US (1993) Location models with routing considerations for a single obnoxious facility. Transp Sci 27(4):350–362

    Article  Google Scholar 

  • Toumazis I, Kwon C, Batta R (2013) Value-at-risk and conditional value-at-risk minimization for hazardous materials routing. In: Batta R, Kwon C (eds) Handbook of OR/MS models in hazardous materials transportation. Springer, New York

  • Toyoglu H, Karasan OE, Kara BY (2012) A new formulation approach for location-routing problems. Netw Spat Econ 12(4):635–659

    Article  Google Scholar 

  • Wang J, Kang Y, Kwon C, Batta R (2012) Dual toll pricing for hazardous materials transport with linear delay. Netw Spat Econ 12(1):147–165

    Article  Google Scholar 

  • Zografos K, Samara S (1989) Combined location-routing model for hazardous waste transportation and disposal. Transp Res Rec 1245:52–59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhyun Kwon.

Appendix

Appendix

1.1 Karush Kuhn-Tucker Conditions for the Shortest Path Problem

In order to convert the two-level problem into a single level optimization problem, we want to be able to replace the inner minimization (shortest path) problem with an equivalent set of constraints. As we recall, the inner shortest path problem for shipment s was

$$\min_{x^{s}} \sum\limits_{(i,j) \in \mathcal{A}} L_{ij} x^{s}_{ij} $$

subject to

$$\begin{array}{@{}rcl@{}} &&\sum\limits_{(i,k)\in\mathcal{A}} x^{s}_{ik} - \sum\limits_{(k,i)\in\mathcal{A}} x^{s}_{ki}\left\{ \begin{aligned} = +1 & i=o(s) \\ \geq -y_{i} & i \in \mathcal{M} \\ = 0 & \,\, \mathrm{otherwise} \end{aligned}\right. \quad \forall i\in\mathcal{N} \\ && - x^{s}_{ij} \leq 0 \quad \forall (i,j)\in\mathcal{A} \end{array} $$

which we put into the standard g(x) ≤ 0, h(x) = 0 form:

$$\begin{array}{@{}rcl@{}} - \sum\limits_{(i,k)\in\mathcal{A}} x^{s}_{ik} + \sum\limits_{(k,i)\in\mathcal{A}} x^{s}_{ki} - y_{i} & \leq & 0 \quad \forall i \in \mathcal{M} \\ - x^{s}_{ij} & \leq & 0 \quad \forall (i,j)\in\mathcal{A} \\ - \sum\limits_{(o(s),k)\in\mathcal{A}} x^{s}_{o(s),k} + \sum\limits_{(k,o(s))\in\mathcal{A}} x^{s}_{k,o(s)} + 1 & = & 0 \\ - \sum\limits_{(i,k)\in\mathcal{A}} x^{s}_{ik} + \sum\limits_{(k,i)\in\mathcal{A}} x^{s}_{ki} & = & 0 \quad \forall i \in \mathcal{N} , i \neq o(s), i \notin \mathcal{M} \end{array} $$

The corresponding KKT conditions are, first, stationarity

$$\begin{array}{@{}rcl@{}} L_{ij} - \zeta_{i}^{s} + \zeta_{j}^{s} - \phi_{ij}^{s} & = & 0 \qquad \forall (i,j) \in \mathcal{A} \end{array} $$

then complementary slackness

$$\begin{array}{@{}rcl@{}} \phi^{s}_{ij} x^{s}_{ij} & = & 0 \quad \forall (i,j) \in \mathcal{A} \\ \left( - \sum\limits_{(i,k)\in\mathcal{A}} x^{s}_{ik} + \sum\limits_{(k,i)\in\mathcal{A}} x^{s}_{ki} - y_{i} \right) \zeta_{i} & = & 0 \quad \forall i=\mathcal{M} \end{array} $$

and finally dual feasibility

$$\begin{array}{@{}rcl@{}} \phi^{s}_{ij} & \geq & 0 \qquad \forall (i,j) \in \mathcal{A} \\ \zeta^{s}_{i} & \geq & 0 \qquad \forall i \in \mathcal{M} \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berglund, P.G., Kwon, C. Robust Facility Location Problem for Hazardous Waste Transportation. Netw Spat Econ 14, 91–116 (2014). https://doi.org/10.1007/s11067-013-9208-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-013-9208-4

Keywords

Navigation