Co-evolution of Density and Topology in a Simple Model of City Formation

Abstract

We study the influence that population density and the road network have on each others’ growth and evolution. We use a simple model of formation and evolution of city roads which reproduces the most important empirical features of street networks in cities. Within this framework, we explicitly introduce the topology of the road network and analyze how it evolves and interact with the evolution of population density. We show that accessibility issues -pushing individuals to get closer to high centrality nodes- lead to high density regions and the appearance of densely populated centers. In particular, this model reproduces the empirical fact that the density profile decreases exponentially from a core district. In this simplified model, the size of the core district depends on the relative importance of transportation and rent costs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows. Prentice Hall, New Jersey

    Google Scholar 

  2. Amaral LAN, Scala A, Barthélemy M, Stanley HE (2000) Classes of small-world networks. Proc Natl Acad Sci (USA) 97:11149

    Article  Google Scholar 

  3. Ball P (1998) The self-made tapestry: pattern formation in nature. Oxford University Press, Oxford

    Google Scholar 

  4. Banavar JR, Colaiori F, Flammini A, Maritan A, Rinaldo A (2000) Topology of the fittest transportation network. Phys Rev Lett 84:4745

    Article  Google Scholar 

  5. Banavar JR, Maritan A, Rinaldo A (1999) Size and form in efficient transportation networks. Nature 398:130–132

    Article  Google Scholar 

  6. Barthélemy M (2003) Betweenness centrality in large complex networks. Eur Phys J B 38:163

    Article  Google Scholar 

  7. Barthélemy M, Flammini A (2008) Modeling urban streets patterns. Phys Rev Lett 100:138702

    Article  Google Scholar 

  8. Barthélemy M, Gondran B, Guichard E (2003) Spatial structure of the Internet traffic. Physica A 319:633–642

    Article  Google Scholar 

  9. Batty M (2005) Cities and complexity. MIT, Cambridge

    Google Scholar 

  10. Bejan A, Ledezma GA (1998) Streets tree networks and urban growth: optimal geometry for quickest access between a finite size volume and one point. Physica A 255:211–217

    Article  Google Scholar 

  11. Bern MW, Graham RL (1989) The shortest-network problem. Sci Am 260:66–71

    Article  Google Scholar 

  12. Bettencourt LM, Lobo J, Helbing D, Kuhnert C, West GB (2007) Growth, innovation, scale and the pace of life in cities. Proc Natl Acad Sci (USA) 104:7301–7306

    Article  Google Scholar 

  13. Brueckner JK (1987) The structure of urban equilibria: a unified treatment of the Muth-Mills model. In: Mills EJ (ed) Handbook of regional and urban economics, vol 2. North Holland, Amsterdam, pp 821–845

    Google Scholar 

  14. Buhl J, Gautrais J, Reeves N, Sole RV, Valverde S, Kuntz P, Theraulaz G (2006) Topological patterns in street network of self-organized urban settlement. Eur Phys J B 49:513–522

    Article  Google Scholar 

  15. Cardillo A, Scellato S, Latora V, Porta S (2006) Structural properties of planar graphs of urban street patterns. Phys Rev E 73:066107

    Article  Google Scholar 

  16. Christaller W (1966) Central places in Southern Germany. English translation by CW Baskin. Prentice Hall, London

    Google Scholar 

  17. Coniglio A (1989) Fractal structure of Ising and Potts clusters: exact results. Phys Rev Lett 62:3054

    Article  Google Scholar 

  18. Crucitti P, Latora V, Porta S (2006) Centrality measures in spatial networks of urban streets. Phys Rev E 73:036125

    Article  Google Scholar 

  19. Derrida B, Flyvbjerg H (1987) Distribution of local magnetisations in random networks of automata. J Phys A Math Gen 20:5273–5288

    Article  Google Scholar 

  20. Dixit AK, Stiglitz JE (1977) Monopolistic competition and optimum product diversity. Am Econ Rev 67:297–308

    Google Scholar 

  21. Doyle G, Snell JL (1989) Random walk and electric networks. American Mathematical Society, Providence

    Google Scholar 

  22. Duplantier B (1989) Statistical mechanics of polymer networks of any topology. J Stat Phys 54:581

    Article  Google Scholar 

  23. Freeman LC (1977) A set of measuring centrality based on betweenness. Sociometry 40:35

    Article  Google Scholar 

  24. Fujita M, Krugman P, Venables AJ (1999) The spatial economy: cities, regions, and international trade. MIT, Cambridge

    Google Scholar 

  25. Gastner MT, Newman MEJ (2006) The spatial structure of networks. Phys Rev E 74:016117

    Article  Google Scholar 

  26. Gerke S, McDiarmid C (2004) On the number of edges in random planar graphs. Comb Probab Comput 13:165

    Article  Google Scholar 

  27. Goh K-I, Kahng B, Kim D (2001) Universal behavior of load distribution in scale-free networks. Phys Rev Lett 87:278701

    Article  Google Scholar 

  28. Goodman AC (1988) An econometric model in housing price, permanent income, tenure choice and housing demand. J Urban Econ 23:327–353

    Article  Google Scholar 

  29. Graham RL, Hell P (1985) On the history of the minimum spanning tree problem. Ann Hist Comput 7:43–57

    Article  Google Scholar 

  30. Itzykson C, Drouffe J-M (1989) Statistical field theory, vol 2. Cambridge University Press, Cambridge

    Google Scholar 

  31. Jaromczyk JW, Toussaint GT (1992) Relative neighborhood graphs and their relatives. Proc IEEE 80:1502

    Article  Google Scholar 

  32. Jensen P (2006) Network-based predictions of retail store commercial categories and optimal locations. Phys Rev E (R) 74:035101

    Article  Google Scholar 

  33. Jiang B, Claramunt C (2004) Topological analysis of urban street networks. Environ Plan B 31:151–162

    Article  Google Scholar 

  34. Kalapala V, Sanwalani V, Clauset A, Moore C (2006) Scale invariance in road networks. Phys Rev. E 73:026130

    Article  Google Scholar 

  35. Lammer S, Gehlsen B, Helbing D (2006) Scaling laws in the spatial structure of urban road networks. Phys A 363:89

    Article  Google Scholar 

  36. Levinson D (2008) Density and dispersion: the co-development of land use and rail in London. J Econ Geogr 8:55–77

    Article  Google Scholar 

  37. Levinson D, Yerra B (2006) Self-organization of surface transportation networks. Transp Sci 40:179–188

    Article  Google Scholar 

  38. Makse H, Andrade JS, Batty M, Havlin S, Stanley HE (1998) Modeling urban growth patterns with correlated percolation. Phys Rev E 58:7054

    Article  Google Scholar 

  39. Makse HA, Havlin S, Stanley HE (2002) Modelling urban growth patterns. Nature 377:608

    Article  Google Scholar 

  40. Maritan A, Colaiori F, Flammini A, Cieplak M, Banavar JR (1996) Universality classes of optimal channel networks. Science 272:984–986

    Article  Google Scholar 

  41. Porta S, Crucitti P, Latora V (2006) The network analysis of urban streets: a primal approach. Environ Plan B 33:705

    Article  Google Scholar 

  42. Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2:886–897

    Article  Google Scholar 

  43. Rodriguez-Iturbe I, Rinaldo A (1997) Fractal river basins: chance and self-organization. Cambridge University Press, Cambridge

    Google Scholar 

  44. Roswall M, Trusina A, Minnhagen P, Sneppen K (2005) Networks and cities: an information perspective. arXiv:cond-mat/0407054

  45. Runions A, Fuhrer AM, Lane B, Federl P, Rolland-Lagan A-G, Prusinkiewicz P (2005) Modeling and visualization of leaf venation patterns. ACM Trans Graph 24(3):702–711

    Article  Google Scholar 

  46. Samaniego H, Moses ME (2007) Cities as organisms: allometric scaling as an optimization model to assess road networks in the USA. Presented at the Access to Destinations II Conference, Minneapolis, August 2007

  47. Scellato S, Cardillo A, Latora V, Porta S (2006) The backbone of a city. arXiv:physics/0511063

  48. Schwartz M (1986) Telecommunication networks: protocols, modelling and analysis. Addison-Wesley Longman, Boston

    Google Scholar 

  49. Stevens PS (1974) Patterns in nature. Little, Brown, Boston

    Google Scholar 

  50. Toussaint GT (1980) The relative neighborhood graph of a finite planar set. Pattern Recogn 12:261

    Article  Google Scholar 

  51. UN Population Division (2008) UN Population Division homepage. http://www.unpopulation.org

  52. von Thünen JH (1966) Von Thünen’s isolated state. Pergmanon, Oxford

    Google Scholar 

  53. West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Santoboni for many discussions at various stages of this work, and two anonymous referees for several important comments and suggestions. MB also thanks Indiana University for its warm welcome where part of this work was performed.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marc Barthélemy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barthélemy, M., Flammini, A. Co-evolution of Density and Topology in a Simple Model of City Formation. Netw Spat Econ 9, 401–425 (2009). https://doi.org/10.1007/s11067-008-9068-5

Download citation

Keywords

  • Networks
  • City formation and evolution
  • Urban economics