Overcoming economic challenges of internet operators in low income regions through a delay tolerant architecture with mechanic backhauls

  • Luis Marentes
  • Tilman Wolf
  • Anna Nagurney
  • Yezid Donoso
  • Harold Castro
Article

Abstract

Regions with low population densities and low income, which may be rural, are far behind in Internet access as compared to their urban counterparts. Economically unsustainable deployments have been suggested as one of the factors with a high negative impact. Researchers using the Delay Tolerant Network Architecture (DTN) have established a less expensive alternative, but they do not provide guidelines as to how to price the new possible services nor any indication as to operators’ profitability. Resolutions of these two issues are the contributions of this paper. Based on a continuous pricing model, we explore how far the use of this technology may help in attaining profitable deployments with real and delay tolerant services. Our findings indicate that it is possible to support the investment in most of the scenarios built over data of a Sub-Saharan deployment, and for those not supported 79 % of the investment is predicted to be covered by gross profits. We hypothesize that the remaining value is affordable if service differentiation is enabled by means of a complementary architecture. Three components to test the hypothesis are introduced: (1) the pricing elements to form service level agreements, (2) a general overview of the architecture requirements, and (3) a novel pricing model. In this regard, our results show a positive effect of service differentiation which improves profits by 32 %.

Keywords

Economic models Internet universal access Delay tolerant architecture Continuous time pricing models Service differentiation Rural networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anand, A., Pejovic, V., Belding, E.M., Johnson, D.L. (2012). Villagecell: cost effective cellular connectivity in rural areas.. In: Proceedings of the Fifth International Conference on Information and Communication Technologies and Development, ICTD ’12. USA. ACM, New York, NY, (pp. 180–189).Google Scholar
  2. 2.
    Balasubramanian, A., Zhou, Y., Croft, W.B., Levine, B.N., Venkataramani, A. (2007). Web search from a bus.. In: Proceedings of the Second ACM Workshop on Challenged Networks, CHANTS ’07. USA. ACM, New York, NY, (pp. 59–66).Google Scholar
  3. 3.
    Bouras, C., & Sevasti, A. (2004). SLA-based QoS pricing in DiffServ networks. Computer Communications, 27(18), 1868–1880.CrossRefGoogle Scholar
  4. 4.
    Boyaci, T., & Ray, S. (2003). Product differentiation and capacity cost interaction in time and price sensitive markets. Manufacturing & Service Operations Management, 5(1), 18–36.CrossRefGoogle Scholar
  5. 5.
    Cerf, V., Burleigh, S., Hook, A., Torgerson, L., Dust, R., Scott, K., K., F., Weiss, H. (2007). Delay tolerant networking architecture. RFC4838.Google Scholar
  6. 6.
    Chan, H., Fan, P., Cao, Z. (2005). A utility-based network selection scheme for multiple services in heterogeneous networks. In: International Conference on Wireless Networks, Communications and Mobile Computing, pp. 1175–1180 IEEE.Google Scholar
  7. 7.
    Chen, J., Subramanian, L., Li, J. (2009). RuralCafe: web search in the rural developing world.. In: Proceedings of the 18th International Conference on World Wide Web, WWW ’09. USA. ACM, New York, NY, (pp. 411–420).Google Scholar
  8. 8.
    Commission on the Private Sector & Development (2004). Unleashing entrepreneurship: making business work for the Poor. Report to the secretary-general of the United Nations. Commission on the private sector & development report.Google Scholar
  9. 9.
    Coutinho, M., Moreira, T., Silva, E., Efrat, A., Johnson, T. (2011). A new proposal of data mule network focused on amazon riverine population.. In: Proceedings of the 3rd Extreme Conference on Communication: The Amazon Expedition, ExtremeCom ’11. USA. ACM, New York, NY, (pp. 1–2).Google Scholar
  10. 10.
    Dafermos, S.C., & Sparrow, F.T. (1969). The traffic assignment problem for a general network. Journal of Research of the National Bureau of Standards, 73B, 91–118.Google Scholar
  11. 11.
    Davoli, F., Marchese, M., Mongelli, M. (2010). A measurement-based adaptive control mechanism for pricing in telecommunication networks. Journal of Communications and Networks, 12(3), 253– 265.CrossRefGoogle Scholar
  12. 12.
    Ezziane, Z. (2005). Charging and pricing challenges for 3G systems. Communications Surveys Tutorials IEEE, 7(4), 58–68.CrossRefGoogle Scholar
  13. 13.
    Fall, K. (2003). A delay-tolerant network architecture for challenged internets.. In: Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications - SIGCOMM ’03. USA. ACM Press, New York, New York, (pp. 27–34).Google Scholar
  14. 14.
    Ganley, D., & Kraemer, K. (2005). Across the digital divide?: a cross-country multi-technology analysis of the determinants of IT penetration. Journal of the Association for Information Systems, 6(12), 409–432.Google Scholar
  15. 15.
    Gizelis, C. a., & Vergados, D.D. (2011). A Survey of pricing schemes in wireless networks. IEEE Communications Surveys & Tutorials, 13(1), 126–145.CrossRefGoogle Scholar
  16. 16.
    Gosztony, G. (1991). CCITT work in teletraffic engineering. IEEE Journal on Selected Areas in Communications, 9(2), 131–134.CrossRefGoogle Scholar
  17. 17.
    Grasic, S., & Lindgren, A. (2014). Revisiting a remote village scenario and its DTN routing objective. Computer Communications, 48, 133–140.CrossRefGoogle Scholar
  18. 18.
    Gulati, G.J., & Yates, D.J. (2012). Different paths to universal access: the impact of policy and regulation on broadband diffusion in the developed and developing worlds. Telecommunications Policy, 36(9), 749–761. Special Issue: Papers from the 39th Research Conference on Communication, Information and Internet Policy (TPRC 2011).CrossRefGoogle Scholar
  19. 19.
    Guo, S., Derakhshani, M., Falaki, M.H., Ismail, U., Luk, R., Oliver, S., Ur Rahman, S., Seth, A., Zaharia, M., Keshav, S. (2011). Design and implementation of the kiosknet system. Computer Networks, 55(1), 264–281.CrossRefGoogle Scholar
  20. 20.
    Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu, A., Shih, E., Balakrishnan, H., Madden, S. (2006). CarTel : A distributed mobile sensor computing system. In: Proceedings of the 4th international conference on Embedded networked sensor. USA. ACM, Boulder, Colorado, (pp. 125–138).Google Scholar
  21. 21.
    Husni, E. (2011). Rural Internet service system based on delay tolerant network (DTN) using train system. In 2011 International Conference on Electrical Engineering and Informatics (ICEEI), pages 1–5, Bandung, Indonesia. IEEE.Google Scholar
  22. 22.
    Hyyryläinen, T., Kärkkäinen, T., Luo, C., Jaspertas, V., Karvo, J., Ott, J. (2007). Opportunistic email distribution and access in challenged heterogeneous environments.. In: Proceedings of the Second ACM Workshop on Challenged Networks, CHANTS ’07. USA. ACM, New York, NY, (pp. 97–100).Google Scholar
  23. 23.
    International Telecommunication Union (2014). Internet live stats. Accessed 20 august 2014. http://www.internetlivestats.com.
  24. 24.
    Johnson, D.L., Belding, E.M., Almeroth, K., van Stam, G. (2010). Internet usage and performance analysis of a rural wireless network in Macha, Zambia.. In: Proceedings of the 4th ACM Workshop on Networked Systems for Developing Regions, NSDR ’10. USA. ACM, New York, NY, (pp. 1–6).Google Scholar
  25. 25.
    Joutsensalo, J., Viinikainen, A., Wikström, M., Hämäläinen, T. (2008). Bandwidth allocation and pricing in multinode network. AEU - International Journal of Electronics and Communications, 62(3), 185–192.CrossRefGoogle Scholar
  26. 26.
    Kamien, M.I., & Schwartz, N.L. (1991). Dynamic optimization: the calculus of variations and optimal control in economics and management. Elsevier B.V.Google Scholar
  27. 27.
    Khabbaz, M., Assi, C., Fawaz, W. (2012). Disruption tolerant networking: a comprehensive survey on recent developments and persisting challenges. Communications Surveys Tutorials, IEEE, 14(2), 607–640.CrossRefGoogle Scholar
  28. 28.
    Kuriyan, R., Ray, I., Toyama, K. (2008). Information and communication technologies for development: the bottom of the pyramid model in practice. The Information Society, 24(2), 93–104.CrossRefGoogle Scholar
  29. 29.
    LaRose, R., Gregg, J.L., Strover, S., Straubhaar, J., Carpenter, S. (2007). Closing the rural broadband gap: promoting adoption of the internet in rural America. Telecommunications Policy, 31(6-7), 359–373.CrossRefGoogle Scholar
  30. 30.
    Liu, C., Gkelias, A., Leung, K. (2008). Connection admission control and grade of service for QoS routing in mesh networks.. In: 19th International Symposium on Personal, Indoor and Mobile Radio Communications. IEEE, (pp. 1–5).Google Scholar
  31. 31.
    Manner, J., Karagiannis, G., McDonald, A. (2010). NSIS signaling layer protocol (NSLP) for quality of service signaling. RFC5974.Google Scholar
  32. 32.
    Marentes, A., & Donoso, Y. (2013). Assigning capacity and prices for telecommunication services to increase possibilities of investment in rural networks.. In: Global Information Infrastructure and Networking Symposium (GIIS), GIIS ’13. IEEE, (pp. 1–6).Google Scholar
  33. 33.
    Michalakelis, C., Varoutas, D., Sphicopoulos, T. (2008). Diffusion models of mobile telephony in Greece. Telecommunications Policy, 32(3-4), 234–245.CrossRefGoogle Scholar
  34. 34.
    Mo, J., Kim, W., Park, H. (2013). Internet service pricing: flat or volume?. Journal of Network and Systems Management, 21(2), 298–325.CrossRefGoogle Scholar
  35. 35.
    Nagurney, A. (1999). Network economics: a variational inequality approach. Kluwer Academic Publishers. Dordrecht, the Netherlands, second revised edition.Google Scholar
  36. 36.
    Ntareme, H., Zennaro, M., Pehrson, B. (2011). Delay tolerant network on smartphones: applications for communication challenged areas.. In: Proceedings of the 3rd Extreme Conference on Communication: The Amazon Expedition, ExtremeCom ’11. USA. ACM, New York, NY, (pp. 1–6).Google Scholar
  37. 37.
    Pandey, V., Ghosal, D., Mukherjee, B. (2007). Pricing-based approaches in the design of next-generation wireless networks: a review and a unified proposal. Communications Surveys Tutorials, IEEE, 9(2), 88–101.CrossRefGoogle Scholar
  38. 38.
    Pentland, A., Fletcher, R., Hasson, A. (2004). DakNet: rethinking connectivity in developing nations. Computer, 37(1), 78–83.CrossRefGoogle Scholar
  39. 39.
    Postigo-Boix, M., & Melus-Moreno, J. (2008). Influence of the grade of service in the evaluation of the mean reserved bandwidth for elastic services. Communications Letters, IEEE, 12(2), 143–145.CrossRefGoogle Scholar
  40. 40.
    Qiu, Y., & Marbach, P. (2003). Bandwidth allocation in ad hoc networks: a price-based approach. InIEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428), volume 2, pp. 797–807. IEEE.Google Scholar
  41. 41.
    Seth, A., Kroeker, D., Zaharia, M., Guo, S., Keshav, S. (2006). Low-cost communication for rural Internet kiosks using mechanical backhaul.. In: Proceedings of the 12th Annual International Conference on Mobile Computing and Networking, MobiCom ’06. USA. ACM, New York, NY, (pp. 334–345).Google Scholar
  42. 42.
    Tirole, J. (1988). The Theory of Industrial Organization, volume 1 of MIT Press Books. The MIT Press.Google Scholar
  43. 43.
    Wang, L., & Zhuang, W. (2006). A call admission control scheme for packet data in CDMA cellular communications. IEEE Transactions on Wireless Communications, 5(2), 406–416.CrossRefGoogle Scholar
  44. 44.
    Wolf, T., Griffioen, J., Calvert, K., Dutta, R., Rouskas, G., Baldine, I., Nagurney, A. (2012). Choice as a principle in network architecture. SIGCOMM Comput Commun. Rev., 42(4), 105–106.CrossRefGoogle Scholar
  45. 45.
    Wood, L. (2008). Rural broadband: the provider matters. Telecommunications Policy, 32(5), 326–339.CrossRefGoogle Scholar
  46. 46.
    Zarafshan, M., & Chin, K.-W. (2010). TrainNet: a transport system for delivering non real-time data. Computer Communications, 33(15), 1850–1863.CrossRefGoogle Scholar
  47. 47.
    Zhang, W. (2005). Bearer service allocation and pricing in heterogeneous wireless networks. In IEEE International Conference on Communications, volume 2, pp. 1367–1371. IEEE.Google Scholar
  48. 48.
    Zheleva, M., Paul, A., Johnson, D.L., Belding, E. (2013a). Kwiizya: local cellular network services in remote areas.. In: Proceeding of the 11th Annual International Conference on Mobile Systems, Applications, and Services, MobiSys ’13. USA. ACM, New York, NY, (pp. 417–430).Google Scholar
  49. 49.
    Zheleva, M., Schmitt, P., Vigil, M., Belding, E. (2013b). The increased bandwidth fallacy: performance and usage in rural zambia.. In: Proceedings of the 4th Annual Symposium on Computing for Development, ACM DEV-4 ’13. USA. ACM, New York, NY, (pp. 1–10).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Luis Marentes
    • 1
  • Tilman Wolf
    • 2
  • Anna Nagurney
    • 3
  • Yezid Donoso
    • 1
  • Harold Castro
    • 1
  1. 1.Department of Systems and Computing EngineeringUniversidad de los AndesBogotaColombia
  2. 2.Department of Electrical and Computer EngineeringUniversity of MassachusettsAmherstUSA
  3. 3.Operations and Information ManagementUniversity of MassachusettsAmherstUSA

Personalised recommendations